The Open UniversitySkip to content
 

Experimental investigation of insolation-driven dust ejection from Mars’ CO2 ice caps

Kaufmann, E. and Hagermann, A. (2017). Experimental investigation of insolation-driven dust ejection from Mars’ CO2 ice caps. Icarus, 282 pp. 118–126.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.icarus.2016.09.039
Google Scholar: Look up in Google Scholar

Abstract

Mars’ polar caps are – depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars’ southern polar region.

Item Type: Journal Item
ISSN: 0019-1035
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 51403
Depositing User: Stephen Serjeant
Date Deposited: 06 Oct 2017 14:59
Last Modified: 02 May 2018 14:34
URI: http://oro.open.ac.uk/id/eprint/51403
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU