Assessing Source Region Characteristics from Gale crater Lacustrine mudstone

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Not Set

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
ASSESSING SOURCE REGION CHARACTERISTICS FROM GALE CRATER LACUSTRINE MUDSTONE.

C. C. Bedford1, J. C. Bridges2, S. P. Schwenzer1, R. C. Wiens3, E. B. Rampe4, J. Frydenvang5, P. J. Gasda3.

1 The Open University (Candice.bedford@open.ac.uk)
2 University of Leicester
3 Los Alamos National Laboratory
4 NASA Johnson Space Centre
5 University of Copenhagen

The NASA \textit{Curiosity} rover has encountered mudstones deposited in a lake environment within the respective Yellowknife Bay[1] (YKB) [Bradbury Group] and Murray[2] [Mt Sharp Group] formations of Gale crater, Mars. Chemical and mineralogical studies conducted on YKB mudstones show a habitable lake environment at the time of deposition[1]. The Chemistry and Camera (ChemCam) instrument suite has acquired major, minor and trace element compositions through Laser-Induced Breakdown Spectroscopy[3,4] generating an extensive dataset of ~9500 observation points (where one observation point is the average of 30 – 50 spectral analyses). This study has excluded targets that have not hit \textit{in situ} host rock to assess host rock geochemical variation between stratigraphic groups[5]. Our results show that Murray is enriched in SiO\textsubscript{2}, Al\textsubscript{2}O\textsubscript{3}, and K\textsubscript{2}O, but depleted in CaO and MgO compared to YKB mudstone. Despite Murray demonstrating higher Chemical Indices of Alteration than YKB[6,7], Murray’s dominant basaltic mineralogy and secondary mineralogy infers that open system alteration has not masked source characteristics[8]. Hence, we hypothesise that Murray’s geochemical difference is related to a change towards a more silica-rich, tholeiitic provenance from the regional, subalkaline basalt that was initially eroded and deposited at YKB[9,10].