The Open UniversitySkip to content

Transient Overexpression of α-Ca2+/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell Enhances Behavioral Responding to Amphetamine

Loweth, Jessica A.; Singer, Bryan F.; Baker, Lorinda K.; Wilke, Georgia; Inamine, Hidetoshi; Bubula, Nancy; Alexander, John K.; Carlezon, Jr., William A.; Neve, Racheal L. and Vezina, Paul (2010). Transient Overexpression of α-Ca2+/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell Enhances Behavioral Responding to Amphetamine. Journal of Neuroscience, 30(3) pp. 939–949.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (10MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to contribute to the expression of psychostimulant sensitization by regulating dopamine (DA) overflow from DA neuron terminals in the nucleus accumbens (NAcc). The present experiments explored the contribution of CaMKII in NAcc neurons postsynaptic to these terminals where it is known to participate in a number of signaling pathways that regulate responding to psychostimulant drugs. Exposure to amphetamine transiently increased αCaMKII levels in the shell but not the core of the NAcc. Thus, HSV (herpes simplex viral) vectors were used to transiently overexpress αCaMKII in NAcc neurons in drug-naive rats, and behavioral responding to amphetamine was assessed. Transiently overexpressing αCaMKII in the NAcc shell led to long-lasting enhancement of amphetamine-induced locomotion and self-administration manifested when αCaMKII levels were elevated and persisting long after they had returned to baseline. Enhanced locomotion was not observed after infection in the NAcc core or sites adjacent to the NAcc. Transient elevation of NAcc shell αCaMKII levels also enhanced locomotor responding to NAcc AMPA and increased phosphorylation levels of GluR1 (Ser831), a CaMKII site, both soon and long after infection. Similar increases in pGluR1 (Ser831) were observed both soon and long after exposure to amphetamine. These results indicate that the transient increase in αCaMKII observed in neurons of the NAcc shell after viral-mediated gene transfer and likely exposure to amphetamine leads to neuroadaptations in AMPA receptor signaling in this site that may contribute to the long-lasting maintenance of behavioral and incentive sensitization by psychostimulant drugs like amphetamine.

Item Type: Journal Item
Copyright Holders: 2010 The Authors
ISSN: 0270-6474
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 50836
Depositing User: Bryan Singer
Date Deposited: 07 Sep 2017 12:40
Last Modified: 07 Dec 2018 23:01
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU