The Open UniversitySkip to content
 

A Framework for the Systematic Evaluation of Malware Forensic Tools

Kennedy, Ian Martin (2017). A Framework for the Systematic Evaluation of Malware Forensic Tools. PhD thesis The Open University.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB) | Preview
Google Scholar: Look up in Google Scholar

Abstract

Following a series of high profile miscarriages of justice linked to questionable expert evidence, the post of the Forensic Science Regulator was created in 2008 with a remit to improve the standard of practitioner competences and forensic procedures. It has since moved to incorporate a greater level of scientific practice in these areas, as used in the production of expert evidence submitted to the UK Criminal Justice System. Accreditation to their codes of practice and conduct will become mandatory for all forensic practitioners by October 2017. A variety of challenges with expert evidence are explored and linked to a lack of a scientific methodology underpinning the processes followed. In particular, the research focuses upon investigations where malicious software (‘malware’) has been identified.

A framework, called the ‘Malware Analysis Tool Evaluation Framework’ (MATEF), has been developed to address this lack of methodology to evaluate software tools used during investigations involving malware. A prototype implementation of the framework was used to evaluate two tools against a population of over 350,000 samples of malware. Analysis of the findings indicated that the choice of tool could impact on the number of artefacts observed in malware forensic investigations as well as identifying the optimal execution time for a given tool when observing malware artefacts.

Three different measures were used to evaluate the framework. The first of these evaluated the framework against the requirements and determined that these were largely met. Where the requirements were not met these are attributed to matters either outside scope or the fledgling nature of the research. Another measure used to evaluate the framework was to consider its performance in terms of speed and resource utilisation. This identified scope for improvement in terms of the time to complete a test and the need for more economical use of disk space. Finally, the framework provides a scientific means to evaluate malware analysis tools, hence addressing the Research Question subject to the level at which ground truth is established.

A number of contributions are produced as the output of this work. First there is confirmation for the case for a lack of trusted practice in the field of malware forensics. Second, the MATEF itself, as it facilitates the production of empirical evidence of a tool’s ability to detect malware artefacts. A third contribution is a set of requirements for establishing trusted practice in the use of malware artefact detection tools. Finally, empirical evidence that supports both the notion that the choice of tool can impact on the number of artefacts observed in malware forensic investigations as well as identifying the optimal execution time for a given tool when observing malware artefacts.

Item Type: Thesis (PhD)
Copyright Holders: 2017 The Author
Keywords: malware; computer crimes; forensic sciences; electronic evidence
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
Item ID: 50521
Depositing User: Ian Martin Kennedy
Date Deposited: 19 Sep 2017 15:01
Last Modified: 22 Sep 2018 10:42
URI: http://oro.open.ac.uk/id/eprint/50521
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU