FES rehabilitation platform with real-time control and performance feedback.

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2017 The Authors

Version: Version of Record

Link(s) to article on publisher's website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
FES rehabilitation platform with real-time control and performance feedback

L.D. Zoulias | M. Armengol | R. Gibbons | A. Poulton | B. Andrews | W. Holderbaum

Introduction

Osteoporosis after spinal cord injury is associated with low-trauma fractures, and consequently with increased risk of morbidity and mortality. The loss of bone mass density (BMD) due to paraplegia can be reduced through cyclical electrically-induced muscle contractions [1]. Here we propose an FES control system based on posture switching [2], that induces transient loading of the lower limbs during a set of standing postures. This aims to produce an increased, evenly distributed BMD, whilst minimising FES-induced muscle fatigue. Here we describe the design and assessment of the FES exercising platform, comprising a controllable multi-channel electrical stimulator and an instrumented standing frame. The platform supports standing and postural shifting, provides real-time human-in-the-loop FES control with on-line feedback to the user. The platforms is used to investigate the effect of regular exercise on the distribution of BMD in people with paraplegia.

Methods

The FES exercising platform comprises a metal frame with support bars and a safety harness, two 3-axis load-cell assemblies, two 6-axis force plates for accurate force measurement, and a custom-made 16 channel FES stimulator (Fig. 3, left). Furthermore, body motion capture data are recorded with a Qualisys mocap system. Aggregated information from all the sensors is synchronised, and processed in real-time for two purposes: (i) to automatically control the output of the FES stimulator, and (ii) to provide compelling visual feedback to the participant for exercising instructions and performance monitoring (Fig. 1).

Results

The FES exercising platform allows automated safe standing and exercising for people with paraplegia. It can be used for long-term investigation of the effects of various types of exercises on BMD. By using body posture and force data, the system decreased muscle fatigue by activating only the muscles required to maintain standing, at any given time. The performance feedback, increases participant engagement and makes it easier to meet exercise targets. In pilot testing of the platform we achieved postural shifting exercising of up to 30 minutes, with minimal forces recorded from hand support (< 3kg).

Discussion & Conclusions

The FES exercising platform aids the study of techniques for improving BMD through FES intervention. The platform offers prolonged and engaging exercising routines, and provides a wide range of postural measurements for assessment of exercising performance.

To improve the system we are currently towards:

a) An excergame design for multimodal feedback and rewards to the users.

b) A reduced set of markers for posture estimation to achieve robust control and shorter set-up times.

c) A joint based control for recruiting additional muscles groups and allowing more complex exercise postures.

References

Contact Information

- School of Biological Sciences, University of Reading, Whiteknights, RG6 2AY
- Email: ioannis.zoulias@reading.ac.uk | w.holderbaum@reading.ac.uk
- Website: www.ferreading.uk