Copy the page URI to the clipboard
Nabavi, Noushin; Saidy, Nur Ridzwan Nur; Venalainen, Erik; Haegert, Anne; Parolia, Abhijit; Xue, Hui; Wang, Yuwei; Wu, Rebecca; Dong, Xin; Collins, Colin; Crea, Francesco and Wang, Yuzhuo
(2017).
DOI: https://doi.org/10.1038/s41598-017-03731-8
Abstract
Carcinoma of the prostate is the most common cancer in men. Treatment of aggressive prostate cancer involves a regiment of radical prostectomy, radiation therapy, chemotherapy and hormonal therapy. Despite significant improvements in the last decade, the treatment of prostate cancer remains unsatisfactory, because a significant fraction of prostate cancers develop resistance to multiple treatments and become incurable. This prompts an urgent need to investigate the molecular mechanisms underlying the evolution of therapy-induced resistance of prostate cancer either in the form of castration-resistant prostate cancer (CRPC) or transdifferentiated neuroendocrine prostate cancer (NEPC). By analyzing micro-RNA expression profiles in a set of patient-derived prostate cancer xenograft tumor lines, we identified miR-100-5p as one of the key molecular components in the initiation and evolution of androgen ablation therapy resistance in prostate cancer. In vitro results showed that miR-100-5p is required for hormone-independent survival and proliferation of prostate cancer cells post androgen ablation. In Silico target predictions revealed that miR-100-5p target genes are involved in key aspects of cancer progression, and are associated with clinical outcome. Our results suggest that mir-100-5p is a possible therapeutic target involved in prostate cancer progression and relapse post androgen ablation therapy.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 50028
- Item Type
- Journal Item
- ISSN
- 2045-2322
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set Not Set Cancer Research UK (CRUK) - Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
-
?? hwpra ??
Cancer Research Group - Copyright Holders
- © 2017 The Authors
- Related URLs
- Depositing User
- Francesco Crea