The Open UniversitySkip to content
 

Robust water repellent ZnO nanorod array by Swift Heavy Ion Irradiation: Effect of Electronic Excitation Induced Local Chemical State Modification

Shanmugam Ranjith, Kugalur; Raveendran Nivedita, Lalitha; Asokan, Kandasami; Krishnamurthy, Satheesh; Pandian, Ramanathaswamy; Kamruddin, Mohammed; Kumar Avasthi, Devesh and Rajendra Kumar, Ramasamy Thangavelu (2017). Robust water repellent ZnO nanorod array by Swift Heavy Ion Irradiation: Effect of Electronic Excitation Induced Local Chemical State Modification. Scientific reports, 7, article no. 3251.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1038/s41598-017-03313-8
Google Scholar: Look up in Google Scholar

Abstract

Tailoring the surface properties by varying the chemistry and roughness could be of interest for self-cleaning applications. We demonstrate the transformation of hydrophobic ZnO Nano rod (NR) array into superhydrophobic nature by changing the local chemical state and without altering the surface roughness by swift heavy ion (SHI) irradiation. The aligned ZnO NR arrays were irradiated using 150 MeV Ag ions with different fluences from 5E10 to 3E12 ions/cm2. The observed static water contact angles of ZnO NRs samples were 103° ± 3°, 152° ± 4°,161° ± 3°, 164° ± 2°, 167° ± 2°,154 ± 3° and 151° ± 2° for the pristine, ion fluencies of 1E11, 3E11, 5E11, 7E11, 1E12 and 3E12 ions cm−2, respectively. The change in local surface chemistry via formation of surface oxygen related defects due to electronic excitations induced by ion irradiation determine the water dewetting properties. It is found that surface oxygen related defects could be tuned by varying the fluence of the SHIs. Durability tests show that the SHI induced surface oxygen-deficient ZnO NRs have the stable superhydrophobic behavior for more than a year.

Item Type: Journal Item
Copyright Holders: 2017 The Authors
ISSN: 2045-2322
Project Funding Details:
Funded Project NameProject IDFunding Body
Dye sensitised solar cells with functionalised graphene nanosheets. (XD-13-064-SK)Not SetUKIERI (UK-India Education and Research Initiative)
NANOMISSIONSR/NM/NS-113/2010Department of Science and Technology
UGC – IUAC projectUFR-51311Government of India and Inter University Accelerator Centre
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Interdisciplinary Research Centre: International Development & Inclusive Innovation
Item ID: 49601
Depositing User: Satheesh Krishnamurthy
Date Deposited: 13 Jun 2017 10:20
Last Modified: 13 Jun 2017 10:30
URI: http://oro.open.ac.uk/id/eprint/49601
Share this page:

Altmetrics

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU