Lanthanide Ionization Energies and the Sub-Shell Break. Part 2. The Third and Fourth Ionization Energies

How to cite:

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1063/1.4977959
Lanthanide Ionization Energies and the Sub-Shell Break. Part 2. The Third and Fourth Ionization Energies

David A. Johnson Peter G. Nelson

Citation: Journal of Physical and Chemical Reference Data 46, 013109 (2017); doi: 10.1063/1.4977959
View online: http://dx.doi.org/10.1063/1.4977959
View Table of Contents: http://aip.scitation.org/toc/jpr/46/1
Published by the American Institute of Physics
Lanthanide Ionization Energies and the Sub-Shell Break. Part 2. The Third and Fourth Ionization Energies

David A. Johnson
Department of Chemistry, The Open University, Milton Keynes MK7 6AA, England

Peter G. Nelson
Department of Chemistry, University of Hull, Hull HU6 7RX, England

(Received 5 August 2016; accepted 21 February 2017; published online 30 March 2017)

By interpolating a 4f\(^6\)s \(\rightarrow\) 4f\(^7\)s transition within the sequence \(\text{f}^1 \rightarrow \text{f}^{14}\) rather than between \(\text{f}^0\) and \(\text{f}^{14}\), revised third and fourth ionization energies of the lanthanides have been obtained. The revised values, together with the second ionization energies calculated in a previous paper, are used to calculate values of the standard enthalpies of formation of the gaseous tripositive ions, \(\Delta H^\circ_\text{f}(\text{M}^{1+},\text{g})\), and of the lattice and hydration enthalpies of some lanthanide compounds and ions in the trivalent and tetravalent states. The displacements of \(\text{f}^0\) values from nearly smooth \(\text{f}^1 \rightarrow \text{f}^{14}\) variations exceed 30 kJ mol\(^{-1}\) and indicate substantial subshell breaks. © 2017 AIP Publishing LLC for the National Institute of Standards and Technology. [http://dx.doi.org/10.1063/1.4977959]

Key words: lanthanides; ionization energies; thermochemical properties; tetrad effect.

CONTENTS

1. Introduction 2
2. The Values of \(\Delta n^*\) 2
3. The Values of \(\Delta T\) 3
4. The values of \(T(4f^66s)\) 3
5. The Values of \(E(4f^66s)\) in Ln III 4
6. The Values of \(E(4f^66s)\) in Ln IV 5
7. The Values of \(G_3\) and \(\delta\) 6
8. The Ionization Energies 6
8.1. Third ionization energies 7
8.2. Fourth ionization energies 8
8.3. The standard enthalpies of formation of gaseous tripositive ions 9
8.4. Irregularities in the \(4f^55d \rightarrow 4f^66s\) transition in Ln III 10
8.5. Lattice enthalpies and hydration enthalpies of trivalent compounds and ions 10
8.6. Lattice enthalpies of tetravalent lanthanide oxides 11
9. Conclusion 12
10. Acknowledgments 12
11. References 12

List of Tables

1. Calculation of \(n^*\) and \(T(4f^66s)\) in Ln III spectra from estimated and experimental values of \(\Delta T\) and \(\Delta n^*\) .. 2
2. Calculation of \(n^*\) and \(T(4f^66s)\) in Ln IV spectra from estimated and experimental values of \(\Delta T\) and \(\Delta n^*\) .. 3
3. Data used to estimate the \(4f^55d \rightarrow 4f^66s\) transition energy in Nd III, Pm III, and Sm III 4
4. Experimental data used to estimate unknown values of \(E(4f^66s)\) in Ln IV spectra 5
5. Values of the Racah parameter \(G_3\) for the configuration \(4f^66s\) in Ln III and Ln IV spectra 6
6. Values of the Racah parameter \(G_3(4f^77s)\) that were used in calculating the \(\Delta T\) values plotted in Figs. 1 and 2 6
7. Calculation of \(I_3\) using Fig. 4 for the estimation of unknown values of \(E(4f^66s)\) 7
8. Calculation of \(I_4\) from the experimental values of \(E(4f^66s)\) and estimated values obtained using Fig. 5 7
9. Three sets of third and fourth ionization energies: Columns 2 and 6, Sugar and Reader (1973); columns 3 and 7, current NIST recommendations; columns 4 and 8, this work 8
10. Thermodynamic data on lanthanide compounds and ions at 298.15 K; \(q\) is the number of 4f electrons in the gaseous tripositive ion 9
11. Calculation of the lattice enthalpies of lanthanide and hafnium dioxides with the fluorite structure; \(q\) is the number of 4f electrons in the gaseous tetrapositive ion 11

List of Figures

1. The energy difference, \(\Delta T\), between the \(4f^q\) parent levels of the \(4f^66s\) and \(4f^77s\) configurations in lanthanide III spectra plotted against \(q\) 3
2. The energy difference, ΔT, between the 4p0 parent levels of the 4p6s and 4p7s configurations in lanthanide IV and Hf IV spectra plotted against q.

3. Variations in the observed values of the transition between the lowest levels of the 4p55d and 4p6s configurations in lanthanide II and lanthanide III spectra plotted against q.

4. Experimentally determined differences between the lowest levels of the 4p55d and 4p6s configurations in Ln III spectra plotted against their isoelectronic Ln II counterparts.

5. Differences between the lowest levels of the 4p$^{n+1}$ and 4p6s configurations in the Ln IV spectra plotted against their Ln III counterparts.

6. The fourth ionization energies of the lanthanides plotted against the third ionization energies for isoelectronic transitions of the type $[Xe]4p^0 \rightarrow [Xe]4p^{n-1}$.

7. Plot of $\Delta H^\Theta(M^{3+}, g)$ for lanthanide elements against q where q is the number of 4f electrons in the gaseous tripositive ion.

8. Variations in the energy of the transition between the lowest levels of the 4p55d and 4p6s configurations in lanthanide III spectra plotted against q.

9. The lattice and hydration enthalpies of some isostructural trivalent and tetravalent lanthanide compounds and ions plotted against q, the number of 4f electrons in the free ion.

1. Introduction

In a recent work,1 we revised the second ionization energies obtained in a seminal paper by Sugar and Reader.2 Improved accuracy was achieved in this revision by avoiding the influence of a possible subshell break and using more recent auxiliary data. Here we update, in a similar way, the third and fourth ionization energies obtained in a later paper3 by the same authors. This later paper is the source of most recommended values of lanthanide third and fourth ionization energies on the invaluable NIST Atomic Spectra Database website.4 Overall, we shall be concerned with the third and fourth spectra, M III and M IV, of two series of atoms, M, in which the ion generated in the ionization limit has the ground state configuration {Xe}4f0 in which the ion generated in the ionization limit has the ground state configuration {Xe}4f0.

As in the first paper, the method relies on a smooth variation in the energy difference, ΔT, between the unperturbed centers of gravity of the lowest pairs of levels of the 4f6s and 4f7s configurations. These lowest pairs arise from the same 4p0 parent state. Unknown values are obtained by interpolation of the smooth variation established by using the limited number of cases in which the necessary spectroscopic data are available for both the 4f6s and 4f7s levels. The ΔT values are then expressed by a Rydberg-Ritz formula

$$\Delta T = z^2 R \left\{ [1/n^*(6s)]^2 - [1/(n^*(6s) + \Delta n^*)]^2 \right\},$$

where z is the charge of the ion that is formed during ionization, n^* is the effective principal quantum number, and R is the Rydberg constant. Sugar and Reader3 used the value $\Delta n^* = 1.048$ for both series of elements with an estimated uncertainty of ±0.002. Each value of ΔT then yields a value of $n^*(6s)$ that provides $T(4f^6s)$, the amount by which the unperturbed center of gravity of the lowest 4f6s pair lies below the ionization threshold. A small correction, denoted δ, converts this figure to the amount by which the lowest level of the 4f6s configuration (the lowest level of the lowest pair) lies below the ionization threshold and, if the excitation energy of that lowest level can be determined, the third and fourth ionization energies follow. In Secs. 2–9, we examine the steps in the calculation in more detail, paying attention to the way in which Sugar and Reader’s method has been revised.

2. The Values of Δn^*

In Paper I,1 we calculated and surveyed the available experimental data on Δn^* for Ln II, Ln III, and Ln IV spectra and then used them to estimate unknown values for all three series. The values used here for the Ln III and Ln IV series appear in the fourth columns of Tables 1 and 2. They are the averages of the values provided by methods A and B in Table 2 of Paper I. As noted above, Sugar and Reader3 took $\Delta n^* = 1.048 \pm 0.002$ for both these series; our estimated values for Ln III differ from this by less than 0.003 and in most cases by less than 0.001. In the Ln IV series, our values are lower than 1.048 but at most by 0.004.

In Paper I, we also derived an uncertainty in our estimated values of Δn^* for all three series. This was ±0.0052 at the level of two standard deviations, a convention that is also used for uncertainties derived in the present paper. In the Ln III

<table>
<thead>
<tr>
<th>q</th>
<th>Spectrum</th>
<th>ΔT/cm$^{-1}$</th>
<th>Δn^*</th>
<th>n^*</th>
<th>$T(4f^6s)$/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>La III</td>
<td>68 756a</td>
<td>1.049 45</td>
<td>2.6458</td>
<td>141 086</td>
</tr>
<tr>
<td>1</td>
<td>Ce III</td>
<td>70 245a</td>
<td>1.048 18</td>
<td>2.6233</td>
<td>143 516</td>
</tr>
<tr>
<td>2</td>
<td>Pr III</td>
<td>71 601b</td>
<td>1.047 02</td>
<td>2.6034</td>
<td>145 719</td>
</tr>
<tr>
<td>3</td>
<td>Nd III</td>
<td>72 833b</td>
<td>1.047 6</td>
<td>2.5867</td>
<td>147 606</td>
</tr>
<tr>
<td>4</td>
<td>Pm III</td>
<td>74 109b</td>
<td>1.047 7</td>
<td>2.5695</td>
<td>149 589</td>
</tr>
<tr>
<td>5</td>
<td>Sm III</td>
<td>75 381b</td>
<td>1.047 8</td>
<td>2.5527</td>
<td>151 564</td>
</tr>
<tr>
<td>6</td>
<td>Eu III</td>
<td>76 650b</td>
<td>1.047 9</td>
<td>2.5363</td>
<td>153 531</td>
</tr>
<tr>
<td>7</td>
<td>Gd III</td>
<td>77 883b</td>
<td>1.048 0</td>
<td>2.5208</td>
<td>155 425</td>
</tr>
<tr>
<td>8</td>
<td>Tb III</td>
<td>79 180b</td>
<td>1.047 6</td>
<td>2.5045</td>
<td>157 454</td>
</tr>
<tr>
<td>9</td>
<td>Dy III</td>
<td>80 441b</td>
<td>1.047 2</td>
<td>2.4890</td>
<td>159 422</td>
</tr>
<tr>
<td>10</td>
<td>Ho III</td>
<td>81 699b</td>
<td>1.046 9</td>
<td>2.4739</td>
<td>161 374</td>
</tr>
<tr>
<td>11</td>
<td>Er III</td>
<td>82 977b</td>
<td>1.046 5</td>
<td>2.4589</td>
<td>163 348</td>
</tr>
<tr>
<td>12</td>
<td>Tm III</td>
<td>84 211b</td>
<td>1.046 1</td>
<td>2.4446</td>
<td>165 265</td>
</tr>
<tr>
<td>13</td>
<td>Yb III</td>
<td>85 475b</td>
<td>1.045 3</td>
<td>2.4301</td>
<td>167 243</td>
</tr>
<tr>
<td>14</td>
<td>Lu III</td>
<td>86 681b</td>
<td>1.045 65</td>
<td>2.4171</td>
<td>169 047</td>
</tr>
</tbody>
</table>

aFrom Eq. (2) using experimental ΔE values$^4-6$ and G_1 from Tables 5 and 6.

bFrom Sugar and Reader’s analysis3 (see Sec. 7).

cBy interpolation in Fig. 1.

Table 2: Calculation of \(n^* \) and \(T(4f^6s) \) in Ln IV spectra from estimated and experimental values of \(\Delta T \) and \(\Delta n^* \). Figures estimated by interpolation from Fig. 2 are in parentheses.

<table>
<thead>
<tr>
<th>(q)</th>
<th>Spectrum</th>
<th>(\Delta T/cm^{-1})</th>
<th>(\Delta n^*)</th>
<th>(n^*)</th>
<th>(T(4f^6s)/cm^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ce IV</td>
<td>96 900 (^a)</td>
<td>1.03741</td>
<td>2.8842</td>
<td>211 069</td>
</tr>
<tr>
<td>1</td>
<td>Pr IV</td>
<td>99 240 (^a)</td>
<td>1.0463</td>
<td>2.8638</td>
<td>214 086</td>
</tr>
<tr>
<td>2</td>
<td>Nd IV</td>
<td>(100 983) (^b)</td>
<td>1.0456</td>
<td>2.8444</td>
<td>217 017</td>
</tr>
<tr>
<td>3</td>
<td>Pm IV</td>
<td>(102 725) (^b)</td>
<td>1.0457</td>
<td>2.8260</td>
<td>219 892</td>
</tr>
<tr>
<td>4</td>
<td>Sm IV</td>
<td>(104 466) (^b)</td>
<td>1.0458</td>
<td>2.8079</td>
<td>222 695</td>
</tr>
<tr>
<td>5</td>
<td>Eu IV</td>
<td>(106 206) (^b)</td>
<td>1.0458</td>
<td>2.7904</td>
<td>225 497</td>
</tr>
<tr>
<td>6</td>
<td>Gd IV</td>
<td>(107 945) (^b)</td>
<td>1.0459</td>
<td>2.7731</td>
<td>228 320</td>
</tr>
<tr>
<td>7</td>
<td>Tb IV</td>
<td>(109 683) (^b)</td>
<td>1.0460</td>
<td>2.7563</td>
<td>231 111</td>
</tr>
<tr>
<td>8</td>
<td>Dy IV</td>
<td>(111 420) (^b)</td>
<td>1.0461</td>
<td>2.7395</td>
<td>233 955</td>
</tr>
<tr>
<td>9</td>
<td>Ho IV</td>
<td>(113 157) (^b)</td>
<td>1.0462</td>
<td>2.7230</td>
<td>236 799</td>
</tr>
<tr>
<td>10</td>
<td>Er IV</td>
<td>(114 892) (^b)</td>
<td>1.0463</td>
<td>2.7069</td>
<td>239 624</td>
</tr>
<tr>
<td>11</td>
<td>Tm IV</td>
<td>(116 626) (^b)</td>
<td>1.0464</td>
<td>2.6911</td>
<td>242 446</td>
</tr>
<tr>
<td>12</td>
<td>Yb IV</td>
<td>(118 363) (^b)</td>
<td>1.0465</td>
<td>2.6755</td>
<td>245 281</td>
</tr>
<tr>
<td>13</td>
<td>Lu IV</td>
<td>12 0045 (^b)</td>
<td>1.0470</td>
<td>2.6611</td>
<td>247 943</td>
</tr>
<tr>
<td>14</td>
<td>Hf IV</td>
<td>12 1846 (^b)</td>
<td>1.0471</td>
<td>2.6461</td>
<td>250 762</td>
</tr>
</tbody>
</table>

\(^a \)From Eq. (2) using experimental \(\Delta E \) values \(^4, ^7, ^19, ^20 \) and \(G_1 \) from Tables 5 and 6.

\(^b \)By interpolation in Fig. 2.

series, it is equivalent to a contribution of \(\pm 400 \, \text{cm}^{-1} \) to the uncertainty in the ionization energy. For the Ln IV series, the contribution is \(\pm 600 \, \text{cm}^{-1} \).

3. The Values of \(\Delta T \)

Since 1973, 4f\(^6s \) and 4f\(^7s \) levels in the spectra of Gd III, \(^5 \)Er III (Ref. 6), and Yb IV (Ref. 7) have become available. This means that, in the case of Ln III spectra, we have seven values of \(\Delta T \) whereas Sugar and Reader had five; with Ln IV, there are now five rather than four. However, because of the possibility of a subshell break, we reject the La III and Ce IV values which visibly reduce the goodness of fit when \(\Delta T \) is plotted against \(q \).

\(\Delta T \) is equal to the separation of the lowest levels of the 4f\(^6s \) and 4f\(^7s \) configurations after each lowest level has been corrected by the quantity, \(\delta \). As in Paper I, Judd’s formulae \(^8, ^9 \) were used to calculate the values of \(\delta \), which depend on the parameter \(G_1 \). For non-zero values of \(G_3(4f^6s) \) in Ln III spectra, Sugar and Reader assumed \(G_3 = 310 \, \text{cm}^{-1} \); for the Ln IV spectra they took \(G_3 = 410 \, \text{cm}^{-1} \). We, however, have tried to calculate individual values where the available data permit. We give a full account of this in Sec. 7; here we merely direct attention to a useful result of Judd’s formulae \(^8, ^9 \), which depend on the \(G \) parameter. We give a full account of this in Sec. 7; here we merely direct attention to a useful result of Judd’s formulae. If \(\Delta E \) is the separation of the lowest levels of the 4f\(^6s \) and 4f\(^7s \) configurations, and \(S_1 \) is the spin quantum number of the 4f\(^7 \) core, then the equation for Ln IV provides estimates of \(\Delta T \) for the sequence Nd IV–Tm IV. These too appear in column 3 of Tables 1 and 2. For the uncertainty in the \(\Delta T \) values, we note that doubling the standard deviation of the separations of the fitted points from the curves in Figs. 1 and 2 gives \(\pm 70 \, \text{cm}^{-1} \) in both cases. They transmit uncertainties of \(\pm 110 \, \text{cm}^{-1} \) to both the third and the fourth ionization energies.

4. The values of \(T(4f^6s) \)

When inserted into Eq. (1), the estimated and experimental values of \(\Delta T \) and \(\Delta n^* \) provide, first, values of \(n^*(6s) \) for each element. The \(n^*(6s) \) values in turn then yield \(T(4f^6s) \), the amount by which the unperturbed center of gravity of the lowest 4f\(^6s \) pair lies below the ionization threshold of the sequence 4f\(^6n \). This threshold is the lowest level of the
configuration 4f. The results of the calculations appear in Tables 1 and 2. In the Ln III spectra, the uncertainties in \(\Delta n^* \) and \(\Delta T \) that we have already discussed contribute a combined uncertainty of \(\pm 420 \text{ cm}^{-1} \) to \(T(4f^66s) \). In the Ln IV spectra, the figure is \(\pm 620 \text{ cm}^{-1} \).

We now consider the calculation of the values of \(E(4f^66s) \). Because the method used for Ln III spectra differs from that applied to Ln IV, we have separate sections on the two types of spectra.

5. The Values of \(E(4f^66s) \) in Ln III

\(E(4f^66s) \) is the energy of the lowest level of the 4f\(^6\)6s configuration relative to the ground state of the dipositive ion. It is one of a pair, there being a higher partner level arising from the same 4f parent. The amount by which the lower level lies below the ionization threshold can be found by adding \(\delta \), its separation from the unperturbed center of gravity of the pair, to \(T(4f^66s) \). Thus, if the lowest level of the 4f\(^6\)6s configuration has been located in the Ln III spectrum, the third ionization energy is obtained as the sum \(\{E(4f^66s) + T(4f^66s) + \delta \} \).

In their paper in 1973, Sugar and Reader had available ten experimental values of \(E(4f^66s) \): the missing values were those of neodymium, promethium, samarium, europium, and dysprosium. Sugar and Reader obtained estimates of their five missing values by using what they called the system difference (SD), the difference between the lowest levels of the configurations 4f\(^5\)5d and 4f\(^6\)\(^{\pm1}\). Estimates of this quantity for the third spectra, Ln III, made by Martin\(^{10} \) allowed them to calculate ten values of the transition energy 4f\(^5\)5d \(\rightarrow \) 4f\(^6\)6s from their ten experimental values of \(E(4f^66s) \). They plotted these values against the atomic number and, by bridging the gaps with straight lines, obtained estimates for the energy of the 4f\(^5\)5d \(\rightarrow \) 4f\(^6\)6s transition in neodymium, promethium, samarium, europium, and dysprosium. Martin’s SD estimates then allowed calculation of the five missing values of \(E(4f^66s) \).

Since 1973, experimental values of \(E(4f^66s) \) for europium\(^{11} \) and dysprosium\(^{12} \) have become available and there are now experimental data on the SD for all Ln III spectra except those of promethium and samarium. The twelve experimental values of \(E(4f^66s) \) are the figures without parentheses in column 5 of Table 7. The three values in parentheses have been obtained by a modification of the estimation method used by Sugar and Reader.

The upper plot in Fig. 3 shows the twelve experimental values of the 4f\(^5\)5d \(\rightarrow \) 4f\(^6\)6s transition energy in lanthanide III spectra plotted against \(q \). Following Sugar and Reader, the missing values in neodymium, promethium, and samarium could be estimated by bridging the gap with a straight line. However, we have used a different method. The lower plot in Fig. 3 shows the 4f\(^5\)5d \(\rightarrow \) 4f\(^6\)6s transition energy for the iso-electronic lanthanide II spectra. The latter comprise a complete set and, as noted by Brewer,\(^{13} \) the two variations seem very similar. We have therefore estimated missing values in the lanthanide III spectra from the smooth curve obtained when the known Ln III values are plotted against their iso-electronic Ln II counterparts. The required transitions were chosen by first selecting those between the lowest levels of the two configurations. In all but two cases they then fulfilled a second requirement: that the spectroscopic designation of the initial and of the final states should be the same. The two cases in question were Gd II and Dy II, where \(^{8}G_{13/2} \) in 4f\(^8\)5d and \(^{8}H_{15/2} \) in 4f\(^{10}\)5d were chosen so that they matched the lowest levels in Tb III and Ho III. The disruptions in level ordering are due to departures from \(LS \) coupling but the matched levels have similar percentage compositions and the adjustments are small: 22 and 106 cm\(^{-1} \), respectively.

The required data are shown in Table 3 and the plot appears in Fig. 4. The terminal point, Yb II/Lu III, has been omitted because it is so remote from the region within which we need to interpolate.

When inserted into the polynomial fit of Fig. 4, the Pr II, Nd II, and Pm II figures in Table 3 give 14 872, 14 394, and 13 598 cm\(^{-1} \) for the 4f\(^5\)5d \(\rightarrow \) 4f\(^6\)6s transition energy in Nd III, Pm III, and Sm III.

\[\begin{array}{c|c|c}
q & Ln II(4f^55d \rightarrow 4f^66s)^{a} & Ln III(4f^55d \rightarrow 4f^66s)^{a} \\
\hline
1 & -2 451 & 15 959 \\
2 & -3 158 & 15 553 \\
3 & -3 893 & \\
4 & -4 438 & \\
5 & -5 332 & \\
6 & -7 135 & 12 240 \\
7 & -9 923 & 9 195 \\
8 & -10 397^{b} & 8 704 \\
9 & -11 262 & 7 980 \\
10 & -14 952^{a} & 3 791 \\
11 & -16 282 & 2 340 \\
12 & -16 553 & 2 405 \\
13 & -17 625 & 1 270 \\
14 & -22 961 & -5 708 \\
\end{array} \]

\(^{a}\)Unless otherwise stated, transitions occur between the lowest levels of the configurations; data are from Ref. 4.

\(^{b}\)Includes small adjustments described in Sec. 5.
By doubling the standard deviation of the differences of the values placed in parentheses to mark the fact that they are estimates.

Dymium and gadolinium are added to Martin’s Table 1, and 4f
5d configuration cannot be very different from that of 5K5 and Pm III, and Sm III, respectively. The complete set of 4f
5d electronic Ln II counterparts. The data appear in Table 3.

Values of E(4f6s) for Nd III, Pm III, and Sm III can now be obtained using the SD values in column 3 of Table 7. In Nd III the lowest observed level of the 4f
5d configuration is 5K5 at 15 262 cm
1 but in the iso-electronic spectrum Pr II, it is 5L6 which lies about 200 cm
1 below 5K5 and has not yet been identified in Nd III. Ryabchikova et al. give a parameterized treatment of the Nd III spectrum which estimates that 5L6 will lie at about 15 300 cm
1. The energy of the lowest level of the 4f
5d configuration cannot be very different from that of 5K5 and we have placed it at 15 200 cm
1 with an uncertainty of ±200 cm
1. This is 800 cm
1 below the estimate given by Martin.

Values for Pm III and Sm III have been obtained by updating Martin’s Table 1. This contains SD(I), the energy difference between the lowest levels of 4f
5d6s
2 and 4f
5d6s
2, and SD(III), the difference between the lowest levels of 4f
5d
1 and 4f
5d5. When more recent, accurate values for praseodymium and gadolinium are added to Martin’s Table 1, Δ(III, I), the difference (SD(III) - SD(I)) increases from 8400 cm
1 in praseodymium to 8600 cm
1 in gadolinium. We interpolate 8400 cm
1 in promethium and 8500 cm
1 in samarium. The resulting SD estimates for Pm III and Sm III then become our adopted values of 16 400 cm
1 and 24 000 cm
1, respectively. They are in only slight disagreement with the view5 that the Sm III value lies “a little above 24 000 cm
1.”

The estimated values of E(4f6s) for Nd III, Pm III, and Sm III in column 5 of Table 7 are then the sums of the figures in columns 3 and 4. The fact that they are estimates is marked by placing them in parentheses. The uncertainties in E(4f6s) are obtained by combining the doubled standard deviation obtained from Fig. 4 (±370 cm
1) with the uncertainty in the SD. Earlier, we took ±200 cm
1 as the uncertainty in the SD of Nd III. For Pm III and Sm III, the SD values are based on Martin’s revised estimates.5 In four cases, the standard deviation of their differences from subsequent experimental values was ±530 cm
1. We double this figure and take ±1060 cm
1 as the uncertainty of the SD for Pm III and Sm III. The uncertainties in E(4f6s) are then ±430 cm
1 for Nd III and ±1200 cm
1 for Pm III and Sm III.

6. The Values of E(4f
q6s) in Ln IV

In the lanthanide spectra Ln IV, E(4f
q6s) is the energy of the lowest level of the 4f
q6s configuration relative to the 4f
q+1 ground state of the tripositive ion.

In their paper in 1973, Sugar and Reader had available four experimental values of E(4f
q6s): those of cerium, praseodymium, lutetium, and hafnium. As with the Ln III spectra, they obtained estimates of the eleven missing values by using the system difference (SD). However, in eleven of the fourteen spectra, experimental values of the SD were unavailable. The eleven values were therefore estimated by adding 57 300 [1000] cm
1 to Martin’s estimates10 for the iso-electronic systems in Ln III.

With these Ln IV SDs, they were able to calculate four values of the transition 4f
5d → 4f
6s from their four values of E(4f
q6s). A nearly linear variation was observed when the four values in Ln IV were plotted against the values for the iso-electronic systems in Ln III. The missing values of the transition 4f
5d → 4f
6s in Ln IV were then derived from this variation using the iso-electronic estimated/experimental values in Ln III. When added to the estimated SD values, an estimate of each missing value of E(4f
q6s) was obtained.

Here then, unknown values of E(4f
q6s) are obtained by summation of two steps which are themselves usually estimates. This exposes the calculation to the compounding of uncertainties which, in the case of Ln IV spectra, are increased by the assumption that the SDs can be obtained by adding a constant difference to iso-electronic Ln III values. However, it is possible to eliminate the two-step summation. Inclusion of Hf IV now gives us nine experimental values of E(4f
q6s): cerium,3 praseodymium,4 neodymium,15 terbium,16 erbium,17 thulium,18 ytterbium,7 lutetium,4 and hafnium.19,20 In the Ln IV spectra, the ground state configuration is 4f
q+1. In such cases, E(4f
q6s) is identical to the energy difference between the lowest levels of the configurations 4f
q+1 and 4f
q6s. An estimation curve can therefore be established simply by plotting the experimental values of the transition 4f
q+1 → 4f
6s in Ln IV against those of

Table 4. Experimental data used to estimate unknown values of E(4f
q6s) in Ln IV spectra. In all but one case, the transition energies shown are equal to E(4f
q6s) because the ground state configuration of the spectrum is 4f
q+1. The exception is Gd III (q = 7) where Gd2+
2 has a 4f
5d ground state and E(4f
q6s) is 9195 cm
1.

| Ln III[4f
q+1 → 4f
q6s]a | Ln IV[4f
q+1 → 4f
q6s]b |
|-------------------------|-------------------------|
| q | cm
1 | q | cm
1 |
1	19 236	100 259
2	28 399	110 056b
7	6 814	84 955
10	21 824	10 1710c
11	19 316	98 9734
12	25 303	106 011c
13	34 656	116 798

aUnless otherwise stated, transition energies occur between the lowest levels of the configurations and data are from Ref. 4.

bReference 15.

cReference 17.

dReference 18.

eReference 7.
The data appear in Table 4 (a linear fit gives $y = -1.06 \times 10^{-6}x^2 + 1.1837x + 76970$, $R^2 = 0.9977$).

The resulting uncertainties in the isoelectronic Ln III spectra. The data are shown in Table 4. The plot appears in Fig. 5. By means of Fig. 5, missing values of Ln IV ($E(4f^{n}6s)$) can be estimated from the energies of the transition $4f^{n+1} \rightarrow 4f^{n}6s$ in Ln III which, in all but two cases, have been determined experimentally. The results are shown in column 3 of Table 8 where the estimates are enclosed in parentheses. For Gd IV, Dy IV, and Ho IV, the uncertainties in $E(4f^{n}6s)$ are obtained by doubling the sample standard deviations of the points from the curve in Fig. 5. This gives ±1100 cm$^{-1}$. For Pm IV, Sm IV, and Eu IV, we must include a contribution from the values for Nd III, Pm III, and Sm III that were determined in Sec. 5, and upon which they depend. The resulting uncertainties in $E(4f^{n}6s)$ are ±1200 cm$^{-1}$, ±1600 cm$^{-1}$, and ±1600 cm$^{-1}$, respectively.

7. The Values of G_3 and δ

The lowest energy level arising from a configuration $4f^{n}ns$ when $0 < q < 14$ is one of a pair; it has a partner level arising from the same $4f^{n}$ parent. The quantity δ is the separation of the lowest level of $4f^{n}ns$ from the unperturbed center of gravity of the pair. In Paper I, Judd’s formulae8,9 were used to calculate values of δ, which depend on the Racah parameter G_3, and, with Sugar and Reader,2 we found the constant value $G_3 = 210$ cm$^{-1}$ to be a satisfactory approximation for $4f^{n}6s$ in Ln II spectra. When dealing with $4f^{n}6s$ in the Ln III spectra, Sugar and Reader3 again assumed a constant value ($G_3 = 310$ cm$^{-1}$); for the Ln IV spectra they took $G_3 = 410$ cm$^{-1}$. However, subsequently parameterized analyses of the spectra suggest significant variation in the Ln III and Ln IV cases. In Table 5 we give values of G_3 obtained from experimental data by analyses of this kind. These appear without parentheses. For both Ln III and Ln IV, the terminal values are larger than the initial ones, but there is a minimum close to the middle of the series near the half-filled shell configuration $4f^{n}6s$. To obtain estimates for the missing values, we have assumed linear changes between the experimental values and the resulting estimates appear in parentheses. With the exceptions of Pr III, Eu III, and Gd IV, values of δ for the lowest level of the $4f^{n}6s$ configuration are then given by Judd’s first formula8,9 which puts δ equal to $S_1 G_3$. Here S_1 is the total spin quantum number of the $4f^{n}$ core. In Pr III, we accepted Sugar and Reader’s calculation based on $4f^{2}(3H)ns$ centers of gravity. This implies $\delta = 292$ cm$^{-1}$. In Eu III and Gd IV, the lowest level of the $4f^{n}6s$ configuration with $J = 1/2$ is perturbed by interaction with a close but higher level that has the same value of J. In these two cases, we have simply modified Sugar and Reader’s calculation by calculating δ with our revised estimates of G_3 in Table 5. For Eu III and Gd IV, we found 758 cm$^{-1}$ and 851 cm$^{-1}$, respectively. The complete sets of δ values for $4f^{n}6s$ appear in Tables 7 and 8. The sources for G_3 in Table 5 provide typical uncertainties of ±20 cm$^{-1}$ in Ln III spectra and ±30 cm$^{-1}$ in Ln IV. We multiply these figures by S_1 to get the consequent uncertainties in δ.

Finally, some values of $G_3(4f^{n}7s)$ are needed for the calculation of the ΔT values plotted in Figs. 1 and 2. The non-zero values appear in Table 6.

8. The Ionization Energies

Column 5 of Table 7 contains values of $E(4f^{n}6s)$ that were obtained in the way described in Sec. 5. The two subsequent columns in Table 7 provide the additional data needed to convert them into the third ionization energies that appear in the last two columns of the table, the first giving figures in cm$^{-1}$ and the second in eV. Table 8 gives the values of $E(4f^{n}6s)$ obtained in Sec. 6 and repeats the operations of Table 7 to give the fourth
ionization energies in its last two columns. In Table 9, our third and fourth ionization energies are compared with those estimated by Sugar and Reader (1973) and with the current NIST recommendations.4

The uncertainties in our ionization energies were calculated by combining those in $T(4f^{6}6s)$, $E(4f^{6}6s)$, and δ in quadratic fashion. The figures for the three components appear in Secs. 2–7.

8.1. Third ionization energies

The NIST values for La, Ce, Pr, Yb, and Lu are identical to ours because they have small uncertainties and were used as basic data in our semiempirical scheme. In these cases, differences from Sugar and Reader are due to subsequent improvements that are independent of the methods used both by them and in this paper.

For the five elements Gd, Tb, Ho, Er, and Tm, the NIST values are virtually identical to those of Sugar and Reader and, in these cases, NIST does indeed cite the 1973 paper as the source. The differences in europium and dysprosium are due to improved spectroscopic data obtained since 1973, which allowed recalculation of I_3 using Vander Sluis and Nugent’s method and auxiliary data. Until recently, the NIST database also recommended Sugar and Reader’s third ionization energies for Nd, Pr, and Sm. However, during the preparation of this paper, it introduced the new figures in column 3 of Table 9.

The revised NIST values for neodymium and samarium are those of Morss who derived them from thermo-chemical cycles. The method is exposed to uncertainties in auxiliary thermodynamic data, including those in the values of lanthanide second ionization energies for which Morss used the estimates of Sugar and Reader that we have since recalculated. Nevertheless, his values for the third ionization energies of neodymium and samarium agree with ours within the range of uncertainties.

In promethium, the NIST database currently recommends Vander Sluis and Nugent’s method persist. This is 0.4 eV lower than ours and lies well outside our uncertainty range. In the middle region of the series, Vander Sluis and Nugent’s linearization technique produces values of the third ionization energies that are lower than those found by other methods. In neodymium and samarium, their estimates are 0.2 and 0.3 eV lower than the current NIST values. Similar deficiencies of 0.13–0.26 eV occur in Eu, Gd, Tb, and Dy. Vander Sluis and Nugent suggested that this might be because the interpolations made by Sugar and Reader did not take account of what we have called the subshell break. However, our revision eliminates this problem, and the disparities with Vander Sluis and Nugent’s method persist.

To summarize, if we ignore the case of promethium, our values differ from the NIST recommendations by less than 0.1 eV, being slightly lower from samarium onward.

Table 8. Calculation of I_3 from the experimental values of $E(4f^{6}6s)$ and estimated values obtained using Fig. 5.

<table>
<thead>
<tr>
<th>q</th>
<th>$E(4f^{6}6s)$</th>
<th>δ</th>
<th>$T(4f^{6}6s)$</th>
<th>I_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm$^{-1}$</td>
<td></td>
<td></td>
<td>eV</td>
</tr>
<tr>
<td>0</td>
<td>La</td>
<td>86 602</td>
<td>211 069</td>
<td>297 671</td>
</tr>
<tr>
<td>1</td>
<td>Ce</td>
<td>100 259</td>
<td>214 086</td>
<td>314 537</td>
</tr>
<tr>
<td>2</td>
<td>Pr</td>
<td>110 056</td>
<td>217 017</td>
<td>327 463</td>
</tr>
<tr>
<td>3</td>
<td>Nd</td>
<td>(111 604)</td>
<td>219 852</td>
<td>332 023</td>
</tr>
<tr>
<td>4</td>
<td>Sm</td>
<td>(112 412)</td>
<td>222 695</td>
<td>335 837</td>
</tr>
<tr>
<td>5</td>
<td>Eu</td>
<td>(119 970)</td>
<td>225 497</td>
<td>346 347</td>
</tr>
<tr>
<td>6</td>
<td>Gd</td>
<td>(129 282)</td>
<td>228 320</td>
<td>358 453</td>
</tr>
<tr>
<td>7</td>
<td>Tb</td>
<td>89 575</td>
<td>231 111</td>
<td>331 217</td>
</tr>
<tr>
<td>8</td>
<td>Dy</td>
<td>97 562</td>
<td>233 955</td>
<td>332 561</td>
</tr>
<tr>
<td>9</td>
<td>Ho</td>
<td>(105 259)</td>
<td>236 799</td>
<td>342 981</td>
</tr>
<tr>
<td>10</td>
<td>Er</td>
<td>101 710</td>
<td>239 624</td>
<td>342 116</td>
</tr>
<tr>
<td>11</td>
<td>Tm</td>
<td>98 973</td>
<td>242 446</td>
<td>342 033</td>
</tr>
<tr>
<td>12</td>
<td>Yb</td>
<td>(106 011)</td>
<td>245 281</td>
<td>351 711</td>
</tr>
<tr>
<td>13</td>
<td>Lu</td>
<td>116 798</td>
<td>247 943</td>
<td>364 960</td>
</tr>
<tr>
<td>14</td>
<td>Hf</td>
<td>18 380</td>
<td>250 762</td>
<td>269 142</td>
</tr>
</tbody>
</table>

*a*Unless otherwise stated, data are from Ref. 4.

*b*See references in Table 4.

*c*Estimated from Fig. 5; see text.

*d*Reference 12.

Table 7. Calculation of I_3 using Fig. 4 for the estimation of unknown values of $E(4f^{6}6s)$.

<table>
<thead>
<tr>
<th>q</th>
<th>$4f^{6}6s$</th>
<th>$E(4f^{6}6s)$</th>
<th>δ</th>
<th>$T(4f^{6}6s)$</th>
<th>I_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>La</td>
<td>13 591</td>
<td>13 591</td>
<td>0</td>
<td>141 086</td>
</tr>
<tr>
<td>1</td>
<td>Ce</td>
<td>15 959</td>
<td>19 236</td>
<td>157</td>
<td>143 516</td>
</tr>
<tr>
<td>2</td>
<td>Pr</td>
<td>15 533</td>
<td>28 399</td>
<td>292</td>
<td>145 719</td>
</tr>
<tr>
<td>3</td>
<td>Nd</td>
<td>(15 200)</td>
<td>(30 072)</td>
<td>461</td>
<td>147 606</td>
</tr>
<tr>
<td>4</td>
<td>Sm</td>
<td>(16 400)</td>
<td>(30 943)</td>
<td>610</td>
<td>149 589</td>
</tr>
<tr>
<td>5</td>
<td>Eu</td>
<td>(24 000)</td>
<td>(37 598)</td>
<td>755</td>
<td>151 564</td>
</tr>
<tr>
<td>6</td>
<td>Gd</td>
<td>12 240</td>
<td>46 096</td>
<td>758</td>
<td>153 531</td>
</tr>
<tr>
<td>7</td>
<td>Tb</td>
<td>9 195</td>
<td>9 195</td>
<td>1029</td>
<td>155 425</td>
</tr>
<tr>
<td>8</td>
<td>Dy</td>
<td>7 980</td>
<td>7 980</td>
<td>24 433</td>
<td>169 047</td>
</tr>
<tr>
<td>9</td>
<td>Ho</td>
<td>3 791</td>
<td>19 316</td>
<td>455</td>
<td>163 348</td>
</tr>
<tr>
<td>10</td>
<td>Er</td>
<td>2 340</td>
<td>19 316</td>
<td>455</td>
<td>163 348</td>
</tr>
<tr>
<td>11</td>
<td>Tm</td>
<td>2 405</td>
<td>25 303</td>
<td>295</td>
<td>165 265</td>
</tr>
<tr>
<td>12</td>
<td>Yb</td>
<td>1 270</td>
<td>34 656</td>
<td>169</td>
<td>167 243</td>
</tr>
<tr>
<td>13</td>
<td>Lu</td>
<td>5 708</td>
<td>−5 708</td>
<td>0</td>
<td>169 047</td>
</tr>
</tbody>
</table>
TABLE 9. Three sets of third and fourth ionization energies: Columns 2 and 6, Sugar and Reader (1973); columns 3 and 7, current NIST recommendations; columns 4 and 8, this work

<table>
<thead>
<tr>
<th>Element</th>
<th>S&R 1973 I/eV</th>
<th>NIST 2016 I/eV</th>
<th>This work I/eV</th>
<th>Element</th>
<th>S&R 1973 I/eV</th>
<th>NIST 2016 I/eV</th>
<th>This work I/eV</th>
</tr>
</thead>
</table>

8.2. Fourth ionization energies

Again, the identity of the NIST values for Ce, Lu, and Hf with ours reflects their low uncertainties and their use in our fitting procedures.

For the 11 elements Pr–Gd and Dy–Yb, the NIST database again cites Sugar and Reader (1973)\(^3\) as the source. In terbium, the difference of 0.43 eV between Sugar and Reader’s value and that cited by NIST is important because it arises from subsequent work\(^16\) that identified \(E(4f^66s)\) at 84 955 cm\(^{-1}\), compared with the estimate of 88 100 cm\(^{-1}\) in the 1973 paper. The chief source of the error was the 4\(f^n\) \(\rightarrow\) 4\(f^{n+1}\)d system difference which was found at 51 404 cm\(^{-1}\) rather than 54 900 cm\(^{-1}\). Our value for terbium differs from the revised NIST estimate by only 0.03 eV.

In the first half of the series, between neodymium and gadolinium, our estimated values exceed the NIST recommendations by 0.17–0.44 eV. In the second half of the series, between dysprosium and thulium, our values tend to be lower, but by less than 0.3 eV. One effect of these last differences is that the three-quarter shell effect, the downward break in \(I_4\) between holmium and thulium, is more pronounced. The NIST data suggest that the value in thulium is 0.2 eV greater than double that proposed by Sugar and Reader.\(^3\)

Unfortunately, most of the 4\(f^n\) and 5\(d^n\) levels in Pr IV have not been experimentally observed. This makes the assessment of configuration interaction difficult. The upper level of 4\(f(J=3)\) occurs at 199 728 cm\(^{-1}\) but the lower level \((J = 2)\) is missing. We have used the estimate, \(G_3 = 104\ cm^{-1}\), taken from Yb IV and Lu IV, to place it at 199 640 cm\(^{-1}\). Of the 11 levels of 5\(d^n\), only two have been observed: \(^3\)F\(_4\) at 195 917 cm\(^{-1}\) and \(^1\)F\(_3\) at 202 487 cm\(^{-1}\). However, these estimates and observations do suggest that the full set spans the two relevant levels of 4\(f^n\) and this supports the possibility of a strong configuration interaction.

FIG. 6. The fourth ionization energies of the lanthanides plotted against the mechanical value of Eliav et al. (38.98 eV).\(^{31}\) It suggests that Sugar and Reader’s semi-empirical value might be at fault because of an aberrant value of \(\Delta n^*\) brought on by configuration interaction between 4\(f^n\) and 5\(d^n\) levels. The same suggestion automatically applies to our retracing of Sugar and Reader’s method which has yielded a value close to theirs (39.00 eV).

A recent paper\(^30\) has drawn attention to the discrepancy of 3000 cm\(^{-1}\) between the NIST value for the fourth ionization energy of praseodymium (38.98 eV) and the quantum mechanical value of Eliav et al. (38.61 eV).\(^{31}\) It suggests that Sugar and Reader’s semi-empirical value might be at fault because of an aberrant value of \(\Delta n^*\) brought on by configuration interaction between 4\(f^n\) and 5\(d^n\) levels. The same suggestion automatically applies to our retracing of Sugar and Reader’s method which has yielded a value close to theirs (39.00 eV).

However, these estimates and observations do suggest that the full set spans the two relevant levels of 4\(f^n\) and this supports the possibility of a strong configuration interaction.
The proximity of the levels of the two configurations depends on the charge of the ion, and in the isoelectronic Ce III, the 5d6p levels all lie above those of 4f7s. For example, there are separations of 3000 cm⁻¹ between 4f(²F₄/₂)7s(J = 2) and 5d6p(³F₂), and 6400 cm⁻¹ between 4f(²F₅/₂)7s(J = 3) and 5d6p(¹F₃). In this case, larger separations would weaken any configuration interaction but if it occurs, it should have suppressed ΔT and, in its absence, the ionization energy would be higher. There is, however, no obvious sign of this. As Fig. 6 shows, plots of our values of $\Delta H^°(\text{Pr IV})$ agreed with the work on the problem and especially on the spectrum of Pr IV.

Finally we note that, since the work of Eliav et al., other quantum mechanical calculations have been made. Those of Cao and Dalgò treated the lanthanide series as a whole and this less specific approach by two slightly different methods gave values of 38.84 and 39.04 eV, which closely span those given by NIST and by us. Clearly there is a need for further work on the problem and especially on the spectrum of Pr IV.

8.3. The standard enthalpies of formation of gaseous trivalent ions

This quantity is needed for the calculation of the lattice enthalpies of lanthanide compounds and the hydration enthalpies of ions. It can also be used to explore the possibility of a subshell break and to check the overall reliability of our estimates. It can be calculated from the equation

$$\Delta H^°(\text{M}^{3+}, g) = \Delta H^°(\text{M}, g) + I_1 + I_2 + I_3 + (15/2)RT.$$ (3)

Here we use the familiar ideal gas standard state at a pressure of 1 bar for gaseous ions and electrons. There are two recent reviews of the values of $\Delta H^°(\text{M}^3)$ for the lanthanide elements.33,34 We have used the averages of the two sets, and they appear in column 3 of Table 10. Promethium has been omitted because of the absence of an experimental value. When combined with the NIST values of I_1, which have small uncertainties,4 and our revised values of I_2 and I_3, Eq. (3) gives the values of $\Delta H^°(\text{M}^{3+}, g)$ in column 4. $\Delta H^°(\text{M}^{3+}, g)$ refers to the reaction

$$\text{M(s)} \rightarrow \text{M}^{3+}(g) + 3e^-(g).$$ (4)

Most lanthanide metals have some form of hexagonal close-packed structure35 with three bonding electrons per metal atom outside an inner 4f⁰ sub-shell.35 Reaction (4) is then one in which the 4f electrons are conserved. The energies of this kind of reaction usually vary nearly smoothly across the lanthanide series. This is because coupling between the outer bonding and inner 4f electrons is weak. There may be perturbations of the smooth variation caused by structural variations or a tetrad effect36–38 but these are usually small (≤4 kJ mol⁻¹).

In Fig. 7, $\Delta H^°(\text{M}^{3+}, g)$ has been plotted against q, the number of 4f electrons in the gaseous trivalent ion. The cerium value has been increased by 2 kJ mol⁻¹ to place it in the β hexagonally close packed form.33,34 Eleven of the fourteen values vary nearly smoothly with q, any deviations from the curve being ≤8 kJ mol⁻¹ and less than the experimental uncertainties cited in Table 10. Two of the three

<table>
<thead>
<tr>
<th>q</th>
<th>Element</th>
<th>$\Delta H^°(\text{M}, g)\text{a}$</th>
<th>$\Delta H^°(\text{M}^{3+}, g)\text{b}$</th>
<th>$\Delta H^°(\text{MCl}, s)\text{c}$</th>
<th>$\Delta H^°(\text{M}^{3+}, \text{aq})\text{d}$</th>
<th>$\Delta H^°(\text{M}_2\text{O}_3, s)\text{e}$</th>
</tr>
</thead>
</table>

aAverages of the sets of values recommended in Refs. 33 and 34.
bCalculated from Eq. (3) with first ionization energies from Ref. 4 and the recommended second and third ionization energies from Parts 1 and 2 of this work.
cAverage of the set of values recommended in Refs. 40 and 41.
dReference 43.
eReference 42.

fIncludes an electronic contribution to ($H^°(g) - H^°(g)$) for Eu⁵⁺(g) of 1.7 kJ mol⁻¹.
exceptions, those in europium and ytterbium, are displaced upward by 96 and 43 kJ mol\(^{-1}\), respectively. This is because in these two metals, there are two bonding electrons, rather than three, outside an inner 4f\(^{y+1}\) subshell. The displacements represent the amounts by which the two-electron d-valent metals are stabilized with respect to the three-electron trivalent state. The third exception is in lanthanum which is displaced downward by 45 kJ mol\(^{-1}\). We regard the good fit observed for eleven trivalent metals in Fig. 7 and the large displacement at \(q = 0\) as support for both our revised ionization energies and a substantial subshell break.

8.4. Irregularities in the \(4f^5d\rightarrow4f^6s\) transition in Ln III

In Sec. 5, we required values of the differences between the lowest levels of this transition for Nd III, Pm III, and Sm III. We obtained them by plotting known values for Ln III spectra against their isoelectronic Ln II counterparts. Figure 3 plots the data that we used and it includes the complete variation for Ln II with an incomplete one for Ln III. In Fig. 8 we have added our estimated values and plotted a complete variation for Ln III.

In this transition, the 4f electrons are conserved but unlike other changes of this type (Figures 1, 2, and 7) the transition energy does not vary nearly smoothly between 4f\(^1\) and 4f\(^{14}\). It seems that the 5d electron couples much more strongly with the inner 4f\(^0\) subshell than do the s electrons in Figs. 1 and 2 or the bonding electrons in lanthanide metals. It is noticeable that the pattern of the irregularities in Fig. 8 is that of a tetrad effect, which, while only slightly evident in the first half of the series, is prominent from \(q = 6\) onward: the values at \(f^2\), \(f^{10}\), and \(f^{11}\) are depressed with respect to their immediate neighbors. This suggests that a substantial contribution to the irregularities is made by an increase in the interelectronic repulsion energy within the 4f subshell when the outer electron moves out of the 5d and into the 6s orbital. According to the theory of the tetrad effect, this increase varies irregularly across the series and generates downward breaks at \(f^2/f^4\), \(f^7\), and \(f^{10}/f^{11}\). However, in this case, the irregularities are an order of magnitude greater than those found in familiar examples of the effect which involve conventional chemical reactions.

8.5. Lattice enthalpies and hydration enthalpies of trivalent compounds and ions

Here we find out if the subshell break in our values of \(\Delta H^\Theta(M^{3+}, g)\) is transmitted to lattice enthalpies and hydration energies. Reviews of the enthalpies of formation of lanthanide trichlorides, sesquioxides, and aqueous ions give the values shown in Table 10. The figures for the trichlorides are the averages of those in Refs. 40 and 41. We take the lattice enthalpy of a solid lanthanide trichloride, \(L^\Theta(LnCl_3)\), to be the standard enthalpy change, at 298.15 K, of the reaction

\[
Ln^{3+}(g) + 3Cl^- (g) \rightarrow LnCl_3(s).
\] (5)

Thus, \(L^\Theta(LnCl_3, s)\) is given by

\[
L^\Theta(LnCl_3, s) = \Delta H^\Theta(LnCl_3, s) - \Delta H^\Theta(Ln^{3+}, g) - 3\Delta H^\Theta(Cl^-, g).
\] (6)

 Demonstrations of a subshell break are more convincing if they avoid possible irregularities introduced by structural change. We can do this by using the seven trichlorides, LaCl_3, γ-GdCl_3, which all have the hexagonal UC_{13} structure (PmCl_3 has been omitted). With data from columns 4 and 5 of Table 10, and the value \(\Delta H^\Theta(Cl^-, g) = -233.95\) kJ mol\(^{-1}\), Eq. (6) yields the values of \(L^\Theta(LnCl_3)\) plotted in Fig. 9(A). The subshell break is 36 kJ mol\(^{-1}\).

There is evidence that in the early part of the lanthanide series, the four aqueous ions, La\(^{3+}\)(aq), Ce\(^{3+}\)(aq), Pr\(^{3+}\)(aq), and Nd\(^{3+}\)(aq), all have nine-fold trigonal tri-prismatic coordination. We can reproduce the variations in the hydration enthalpies of these ions by using the quantity \(\Delta H^\Theta(M^{3+},aq) - \Delta H^\Theta(M^{1+},aq)/kJ mol^{-1}\) calculated from columns 4 and 6 of Table 10. This has been done in Fig. 9(B). The subshell break is 33 kJ mol\(^{-1}\).
The sequioxides of the series \(\text{La}_2\text{O}_3 \rightarrow \text{Nd}_2\text{O}_3 \) all have the hexagonal A-type \(\text{M}_2\text{O}_3 \) structure. The values of \(\frac{1}{2}L^\text{M}_2\text{O}_3(g) \) can be calculated from columns 4 and 7 of Table 10 and the estimated value \(D^f_{\text{H}}(\text{O}_2^-,g) = 930 \text{ kJ mol}^{-1} \). Since this estimate is a constant for each lattice enthalpy, it does not affect the variation, or the subshell break of 38 \(\text{kJ mol}^{-1} \) revealed by Fig. 9(C).

8.6. Lattice enthalpies of tetravalent lanthanide oxides

Past investigations of the first transition series have found that the subshell break tends to increase with the oxidation state of the transition element. Does this also occur in the lanthanide series? The experimental data are very limited but seem sufficient to answer this question. In the series \(\text{Ce} \rightarrow \text{Hf} \), there are just four known dioxides: those of cerium, praseodymium, terbium, and hafnium. The dioxides of the first three elements have the eight-coordinate fluorite structure. At room temperature, hafnium dioxide has a monoclinic structure in which the hafnium atom is seven-coordinate. However, the cubic fluorite form is stable above 2870 K and there is an experimental value of 5.08 \(\text{Å} \) for its unit cell parameter (internuclear distance 2.20 \(\text{Å} \)). Theoretical calculations indicate that, at 298.15 K, the standard enthalpy of the change from the monoclinic to the fluorite structure is approximately 25 \(\pm \) 10 \(\text{kJ mol}^{-1} \). The value

Table 11. Calculation of the lattice enthalpies of lanthanide and hafnium dioxides with the fluorite structure; \(q \) is the number of 4f electrons in the gaseous tetrapositive ion

<table>
<thead>
<tr>
<th>(q)</th>
<th>Element</th>
<th>(\Delta H^0(M,g))</th>
<th>(\Delta H^0(M^{4+},g))</th>
<th>(\Delta H^0(MO_2,s))</th>
<th>(L^0(MO_2,s))</th>
</tr>
</thead>
</table>

\(^b \)Calculated using Eq. (8) with \(\Delta H^0(\text{O}_2^-,g) = 930 \text{ kJ mol}^{-1} \).

\(^c \)Calculated from Eq. (7) with first ionization energies from Ref. 4 and the recommended second, third, and fourth ionization energies from Parts 1 and 2 of this work.

\(^d \)Reference 42.

\(^e \)Reference 44.

\(^f \)Calculated from Eq. (7) with ionization energies from Ref. 4.

\(^g \)Reference 57 with an adjustment for conversion to a fluorite structure; see text.
of $\Delta H^0(\text{HfO}_2, \text{monoclinic})^{57}$ is -1117.5 ± 2 kJ mol$^{-1}$ so we use the figure $\Delta H^0(\text{HfO}_2, \text{fluorite}) = -1093 \pm 11$ kJ mol$^{-1}$.

Table 11 contains the enthalpies of formation of the other three oxides. The quantity $\Delta H^0(M^{4+}, g)$ and the lattice enthalpy, $L^0(MO_2, s)$, can be calculated from the equations

$$\Delta H^0(M^{4+}, g) = \Delta H^0(M, g) + I_1 + I_2 + I_3 + I_4 + 10RT,$$

$$L^0(MO_2, s) = \Delta H^0(MO_2, s) - \Delta H^0(M^{4+}, g) - 2\Delta I H^0(O^2-, g).$$

For the three lanthanide elements, we have used our revised ionization energies and the $\Delta H^0(M, g)$ values given earlier in this paper. The ionization energies of hafnium and its enthalpy of atomization are taken from Refs. 4 and 44. The lattice enthalpies were again calculated using $\Delta H^0(O^2-, g) = 930$ kJ mol$^{-1}$ and, in Fig. 9(D), they are plotted against q. The subshell break amounts to 68 kJ mol$^{-1}$, approximately double that observed for the oxides $\text{I}_2\text{M}_2\text{O}_5$. It can be seen from Fig. 9(D) that the relative positions of the CeO$_2$, PrO$_2$, and TbO$_2$ points are such that the size of the break is relatively insensitive to the large uncertainties in the hafnium data.

9. Conclusion

The improvements in the auxiliary data, and the modifications that we have made to earlier estimation methods, justify the revised ionization energies and uncertainties listed in Table 9. The ionization energies with higher uncertainties mark the absence of desirable information from the observed spectra, notably the missing energies of the lowest levels of $4f^{n}6s$ for Nd III \rightarrow Sm III, Nd IV \rightarrow Gd IV, Dy IV, and Ho IV. In Pm III and Sm III, the uncertainties are further enhanced by the absence of the SDs for the FD. Thus, further work on all these spectra could improve the estimation scheme. Finally, two specific ionization energies, along with their associated spectra, merit further experimental investigation. First, the fourth ionization energy of praseodymium, obtained through the estimation scheme used by both us and Sugar and Reader, has been questioned from a theoretical standpoint. Second, we take this opportunity to reaffirm the point made in Paper I: the study of lanthanide systematics would be especially helped by a more accurate experimental value of the second ionization energy of lutetium.

Acknowledgments

As in the case of Paper I, the authors are very grateful for the extensive criticisms and suggestions made by a reviewer.

10. References