Lanthanide Ionization Energies and the Sub-Shell Break. Part 1. The Second Ionization Energies

How to cite:

For guidance on citations see FAQs.

© 2017 AIP Publishing LLC for the National Institute of Standards and Technology

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1063/1.4977958

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
The Second Ionization Energies

David A. Johnsona)
Department of Chemistry, The Open University, Milton Keynes MK7 6AA, England

Peter G. Nelson
Department of Chemistry, University of Hull, Hull HU6 7RX, England

(Received 1 August 2016; accepted 21 February 2017; published online 30 March 2017)

By interpolating a $4f^6s \rightarrow 4f^7s$ transition within the sequence $f^1 \rightarrow f^{14}$ rather than between f^0 and f^{14}, revised second ionization energies of the lanthanides have been obtained. In the early part of the series, between cerium and samarium, the revisions are significantly higher than currently accepted values. The revised values have been used to calculate the energy variation for the conversion of Ln(g, $4f^6s^2$) to Ln$^{2+}$(g, $4f^q$) across the series Ba \rightarrow Yb. The variation is smooth between lanthanum and ytterbium but the barium point at $q = 0$ is displaced downwards by more than 0.3 eV, thereby representing a significant sub-shell break. A case is also made for a substantial change to the second ionization energy of lutetium, the revised value being 14.13 \pm 0.10 eV.

Key words: lanthanides; ionization energies; lutetium; thermochemical properties.

CONTENTS

1. Introduction 1
2. The Values of Δn^* 2
3. The Values of ΔT 4
4. The Values of $T(4f^6s)$ 4
5. The Second Ionization Energies 4
6. Discussion 5
Acknowledgments 6
7. Appendix: The Second Ionization Energy of Lutetium 6
8. References 7

List of Tables

1. The reference values of Δn^* for the $4f^qns$ series obtained from experimental data using Eq. (1) 2
2. Values of Δn^* for the $4f^qns$ series; the reference values of Table 1 appear in bold type 3
3. Results of the calculation of n^* and $T(4f^6s)$ from estimated and experimental values of ΔT and Δn^* 3
4. The calculation of the second ionization energies from the values of $T(4f^6s)$ given in Table 3 5
5. Second ionization energies of the elements La \rightarrow Lu in electron volts: Column 2, Ref. 6; column 3, current NIST recommendations, Ref. 1; column 4, this work using our estimated Δn^* values; column 5, our recommended values drawn from columns 3 and 4 5

List of Figures

1. The energy difference, ΔT, between the $4f^q$ parent levels of the $4f^6s$ and $4f^7s$ configurations plotted against q 4
2. The values of ΔU for Eq. (3) plotted against q, the number of $4f$ electrons: (A) using the current recommendations of Ref. 1 for I_1 and I_2; (B) using the current recommendations of Ref. 1 for I_1 and our selected values of I_2 6
3. Values of the lattice enthalpies, $\frac{1}{2}L_\text{T}$(M$_2$O$_3$,s), for the sequence samarium to ytterbium plotted against the reciprocal of (r(M$^{3+}$) + r(O$^{2-}$)), where r(M$^{3+}$) and r(O$^{2-}$) are Shannon radii29 in six and four coordination, respectively 7

1. Introduction

During an investigation of lanthanide thermodynamics, we had a need of sets of lanthanide ionization energies. The standard source is the excellent NIST Atomic Spectra
This provides values of ionization potentials with assessed uncertainties, the detailed atomic spectra from which they were derived, and supporting bibliography that both precedes and postdates the recommended values. Unless otherwise stated, spectroscopic and ionization energy data used in this paper are taken from this website.\(^{b)}\) The first ionization energies of the lanthanides are well established, in most cases with small uncertainties of \(\pm 0.0006\) eV. However, many of the second and third ionization energies have larger uncertainties and were obtained by semi-empirical methods that involve interpolation of data within the lanthanide series. We noticed that the results of these methods were affected by the very question that we were investigating: should the interpolation process be applied to a series that runs from \(f^0\) to \(f^{14}\), or should \(f^0\) be omitted and interpolation confined to the series \(f^1\) to \(f^{14}\)?

Our ligand field analyses of the thermodynamics of the first transition series\(^2\–\(^5\)) favour the second policy: removal of irregularly varying terms from quantities such as lattice enthalpies and hydration energies leaves a smooth variation between \(3d^1\) and \(3d^{10}\), but the value at \(3d^{10}\) is usually displaced from it, sometimes by more than 60 kJ mol\(^{-1}\). We have called this phenomenon the sub-shell break because the change in outer electronic configuration \(3d^0 \rightarrow 3d^1\) is strictly \(3p^6 \rightarrow 3d^1\).

In this paper, we look into the question by reassesing the interpolation methods that have been used to obtain second ionization energies of the lanthanides. Because of the complexity of the spectra of lanthanide ions, few of their ionization energies have been obtained from observations of long series in the atomic spectra. However, in 1965, a set of second ionization energies for the fourteen elements \(La \rightarrow Yb\) were obtained in a ground-breaking paper by Sugar and Reader.\(^6\)

On the current NIST website, it is still cited as the source of twelve of those fourteen second ionization energies. The semi-empirical methods used by Sugar and Reader were later extended in a second paper that provided values for the third and fourth ionization energies.\(^7\)

Here, we recalculate the second ionization energies with a revised version of their method. The revisions take advantage of the improvements and growth of the auxiliary data since 1965. As in the original paper, the method relies on a smooth variation in the energy difference, \(\Delta T\), between the unperturbed centres of gravity of those pairs of \(4f^66s\) and \(4f^77s\) levels that are based upon the lowest \(4f^9\) parent level. Unknown values are obtained by interpolation of the smooth variation, which is established by using the limited number of cases in which the necessary spectroscopic data are available for both the \(4f^66s\) and \(4f^77s\) levels. The \(\Delta T\) values are then expressed by a Rydberg–Ritz formula, which in this case takes the form

\[
\Delta T = 4R \left[\frac{1}{n^*(6s)} - \frac{1}{n^*(6s) + \Delta n^*} \right] \tag{1}
\]

Here \(n^*\) is the effective principal quantum number and \(R\) the Rydberg constant. Sugar and Reader used the value \(\Delta n^* = 1.050\) for the entire series of elements. Each value of \(\Delta T\) then yields a value of \(n^*(6s)\), which provides \(T(4f^66s)\), the amount by which the parent \(4f^9\) level of \(4f^66s\) lies below the ionization threshold. A small correction, denoted \(\delta\), converts this figure to the amount by which the lowest level of the \(4f^66s\) configuration lies below the ionization threshold and if that lowest level can be determined, the second ionization energy follows. In Secs. 2–6, we examine the steps in the calculation in more detail, paying attention to the way in which Sugar and Reader’s method has been revised.

2. The Values of \(\Delta n^*\)

We begin this section by clarifying the meaning of the parameter \(q\). In both this paper and its successor, we shall be concerned with the second, third, and fourth spectra, \(M\) II, \(M\) III, and \(M\) IV, of three series of atoms, \(M\), in which the ion generated at the ionization limit can exist in the electronic configuration \(\{Xe\}4f^q\). In nearly all cases, this is the ground state configuration of the generated ion; the exceptions occur in the spectra \(La\) II and \(Gd\) II. There, the ions \(La^{2+}\) and \(Gd^{2+}\) have ground state configurations \(\{Xe\}5d^1\) and \(\{Xe\}4f^25d^1\), respectively but levels arising from the configurations \(\{Xe\}4f^1\) and \(\{Xe\}4f^6\) can exist in the spectra and they occur as excited states, completing the definition of \(q\). The definition sets up the \(M\) II series as \(Ba–Yb\), the \(M\) III series as \(La \rightarrow Lu\), and the \(M\) IV series as \(Ce \rightarrow Hf\); all three begin at \(q = 0\) and end when \(q = 14\).

To obtain experimental values of \(\Delta n^*\), we require spectroscopic data on the \(4f^66s \rightarrow 4f^77s\) transition and a value of the second ionization energy, \(I_2\), which has been obtained by experimental methods that are independent of, and more accurate than, the one being used here. In the \(f^0 \rightarrow f^{14}\) series, \(Ba–Yb\), there are only three elements (\(Ba\), \(Eu\), \(Yb\)) that meet these criteria. In these three cases, each spectrum provides a value of \(\Delta T\) and therefore of \(\Delta n^*\).

The sparsity of experimental values makes it difficult to refine Sugar and Reader’s use of a fixed value of \(\Delta n^*\). Moreover, our concern about a possible sub-shell break prompted us to ignore the barium value so that our three values are reduced to just two. However, the number can be increased if one also includes \(Ln\) III and \(Ln\) IV spectra. We have therefore calculated as many experimental values of \(\Delta n^*\) as possible. Where \(\delta\) values were required we used Judd’s formulae.\(^5\) We discuss \(\delta\) values more fully later, but here we note only that our estimates are the same, or very nearly the same, as Sugar and Reader’s.\(^6,\(^7\)

The resulting values of \(\Delta n^*\) are obtained from the spectra of \(Eu\) II, \(Yb\) II, \(Ce\) III, \(Pr\) III, \(Yb\) III, \(Lu\) III, \(Lu\) IV, and \(Hf\) IV. They are set out in Table 1. The figures in square brackets are uncertainties that in the ionization energies\(^1\) and are given in square brackets in terms of the last decimal place.

<table>
<thead>
<tr>
<th>(N_n)</th>
<th>(q)</th>
<th>(Ln) III</th>
<th>(Ln) IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>1</td>
<td>1.048 18[30]</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>1.047 02[30]</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>7</td>
<td>1.050 5[14]</td>
<td>1.045 14[18]</td>
</tr>
<tr>
<td>69</td>
<td>14</td>
<td>1.047 22[1]</td>
<td>1.0443[18]</td>
</tr>
</tbody>
</table>

\(^{b)}\) It should be noted that in this work we assume that, unless stated otherwise, the assignments of spectral lines and energy levels in this and other relevant sources are correct.

D. A. JOHNSON AND P. G. NELSON

follow from those in the ionization energies and they are presented as multiples of the last quoted decimal place. The first column, \(N_e \), shows the total number of electrons in the ion. The second gives the value of \(q \) that is equal to the number of 4f electrons in the 4f\(^n\)ns configuration of the Ln\(^{3+}\), Ln\(^{2+}\), or Ln\(^{3+}\) ion. The rows with common values of \(N_e \) and \(q \) correspond to isoelectronic sequences.

The eight values are rather similar: they vary by less than 0.007 (<0.5%). The data for Ln II and Ln III suggest an overall decrease with the number of \(f \) electrons (\(q \)); those for \(q = 13 \) and 14 are consistent with a decrease with the charge of the ion \(z \) (in which case, plots of \(\Delta n^* \) against \(q \) for each \(z \) value will tend to be parallel to each other). Such arguments were used by Brewer\(^9\) in estimating spectroscopic transitions of the type 4f\(^n\)6s \(\rightarrow \) 4f\(^{n-1}\)5d. On the other hand, the irregularities could be due, (b) to effects that are unique to each series (e.g., configuration interaction with another level, the position of which varies with \(z \)).

This leads to two ways, A and B, of estimating the missing values of \(\Delta n^* \). The first, following (a), is to calculate the differences between the known values and use them to estimate unknown differences, thereby completing the values for \(q = 1, 2, 7, 13, \) and 14. The gaps between \(q = 2 \) and 7 and between \(q = 7 \) and 13 can then be bridged by dividing the overall differences equally.

The second method, following (b), was suggested by a reviewer. This uses the eight values to calculate, first, an average linear variation with \(z \) and, second, an average linear variation with \(q \). That procedure generates the following equation:

\[
\Delta n^* = 1.052887 - 0.002350z - 1.7187 \times 10^{-4}q. \tag{2}
\]

This approach effectively assumes that the departures from linearity are random. The results of both methods are shown in Table 2. Both schemes generate parallelisms in that there are similar constant differences between the Ln II, Ln III, and Ln IV series as \(q \) varies. However, method A tries to take account of irregularities by assuming they are a function of \(q \); method B assumes a linear variation for each series.

Because the assumptions underlying the two methods are equally plausible, we have used average values in our subsequent calculations. For the Ln II series, Sugar and Reader\(^6\) assumed a constant value \(\Delta n^* = 1.050 \); our chosen averaged values appear in column 3 of Table 3. Of the twelve estimated values, only four differ from 1.050 by more than 0.001.

The uncertainties in our estimated values of \(\Delta n^* \) arise partly from the uncertainties in the reference values and partly from the methods of estimation. The largest uncertainty in the reference values is ±0.0028. As a measure of those in the methods of estimation, we double the standard deviations\(^c\) of the pairs of values for which the largest value is 0.0022. Combining ±0.0044 with ±0.0028, we get a total uncertainty

\[c\]Throughout both parts of this paper, we set uncertainties based upon standard deviations at twice the standard deviation. For random uncertainties, this corresponds to a 95% confidence level.

Table 3. Results of the calculation of \(n^* \) and \(T(4f^6s) \) from estimated and experimental values of \(\Delta T \) and \(\Delta n^* \). Figures estimated by interpolation in Fig. 1 are in parentheses

<table>
<thead>
<tr>
<th>(N_e)</th>
<th>(q)</th>
<th>Spectrum</th>
<th>(\Delta T/cm^2)</th>
<th>(\Delta n^*)</th>
<th>(n^*(6s))</th>
<th>(T(4f^6s)/cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>0</td>
<td>Ba II</td>
<td>42.355</td>
<td>1.0516</td>
<td>2.3324</td>
<td>80.868</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>La III</td>
<td>43.986</td>
<td>1.0501</td>
<td>2.2975</td>
<td>83.158</td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>Ce II</td>
<td>(44.743)</td>
<td>1.0494</td>
<td>2.2819</td>
<td>84.299</td>
</tr>
<tr>
<td>58</td>
<td>3</td>
<td>Pr II</td>
<td>(45.511)</td>
<td>1.0495</td>
<td>2.2668</td>
<td>85.426</td>
</tr>
<tr>
<td>59</td>
<td>4</td>
<td>Nd II</td>
<td>(46.286)</td>
<td>1.0496</td>
<td>2.2520</td>
<td>86.552</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>Pm II</td>
<td>(47.066)</td>
<td>1.0497</td>
<td>2.2373</td>
<td>87.693</td>
</tr>
<tr>
<td>61</td>
<td>6</td>
<td>Sm II</td>
<td>(47.852)</td>
<td>1.0498</td>
<td>2.2229</td>
<td>88.833</td>
</tr>
<tr>
<td>62</td>
<td>7</td>
<td>Eu II</td>
<td>48.625</td>
<td>1.0505</td>
<td>2.2093</td>
<td>89.930</td>
</tr>
<tr>
<td>63</td>
<td>8</td>
<td>Gd II</td>
<td>(49.443)</td>
<td>1.0494</td>
<td>2.1944</td>
<td>91.155</td>
</tr>
<tr>
<td>64</td>
<td>9</td>
<td>Tb II</td>
<td>(50.248)</td>
<td>1.0492</td>
<td>2.1804</td>
<td>92.330</td>
</tr>
<tr>
<td>65</td>
<td>10</td>
<td>Dy II</td>
<td>(51.058)</td>
<td>1.0488</td>
<td>2.1665</td>
<td>93.518</td>
</tr>
<tr>
<td>66</td>
<td>11</td>
<td>Ho II</td>
<td>(51.874)</td>
<td>1.0484</td>
<td>2.1529</td>
<td>94.704</td>
</tr>
<tr>
<td>67</td>
<td>12</td>
<td>Er II</td>
<td>(52.697)</td>
<td>1.0480</td>
<td>2.1394</td>
<td>95.903</td>
</tr>
<tr>
<td>68</td>
<td>13</td>
<td>Tm II</td>
<td>53.594</td>
<td>1.0476</td>
<td>2.1250</td>
<td>97.207</td>
</tr>
<tr>
<td>69</td>
<td>14</td>
<td>Yb II</td>
<td>54.304</td>
<td>1.0472</td>
<td>2.1139</td>
<td>98.230</td>
</tr>
</tbody>
</table>
of ±0.0052 in the values of Δn^*. In the Ln II series, this is equivalent to a contribution of ±200 cm$^{-1}$ to the final uncertainty in the ionization energies.

3. The Values of ΔT

Sugar and Reader6 established their variation in ΔT by drawing a smooth curve between the values for Ba II, Eu II, and Yb II. Vander Sluis and Nugent10 later suggested that inclusion of the $4f^0$ value might distort interpolation curves of this sort. Subsequent work suggests that, in this particular case, the inclusion of the $4f^0$ point in the smooth curve does indeed lead, in the early part of the series, to estimates of ΔT that are significantly in error. Sugar and Reader’s estimated value of 43 300 cm$^{-1}$ for ΔT of La II led to a second ionization energy of lanthanum of 11.06 ± 0.08 eV. Subsequent work11 on the Rydberg states of La$^+$ gave the value 11.184 96 ± 0.000 06 eV, a figure that is now recommended on the NIST website.5 If Sugar and Reader’s calculation is reversed and the new ionization energy is combined with our averaged estimate of 1.0501 in Table 3, ΔT becomes 43 986 cm$^{-1}$. We have constructed the ΔT variation by combining this last La II value with those of Eu II, Yb II and also that of Tm II, which can be calculated from data that have become available,1,12 since 1965.

ΔT is equal to the separation of the lowest levels of the $4f^66s$ and $4f^77s$ configurations after each lowest level has been corrected by the parameter δ. Judd’s formulae8 allow the calculation of δ in terms of an electronic repulsion parameter G_3, which can be derived by analysis of the atomic spectra. Wybourne13 presents the formulae in a convenient form with helpful illustrative data. Cowan14 provides useful information on the relationship between the different forms of the electronic repulsion parameter. Particularly relevant to the problem considered here is the relationship between G_3 and G_7 for fs interactions ($G_7^2 = 7G_3$).

In the Ln II series, values of G_3 have been derived for the $4f^66s$ configuration in europium (209 cm$^{-1}$),13 erbium (210 cm$^{-1}$),15 and thulium (212 cm$^{-1}$)16 and the value 210 cm$^{-1}$ seems to be a good approximation for the entire Ln II series.15 That assumption was made by Sugar and Reader.6 Judd’s first formula then puts δ equal to S_1G_3 where S_1 is the total spin quantum number of the $4f^4$ core. This provides the δ value for La II, Eu II, and Tm II; for Yb II it is zero. In calculating the ΔT value for Tm II, we also need the small G_3 value for the $4f^{13}7s$ configuration. This is 85 cm$^{-1}$. The resulting values of ΔT for these four elements are those in column 4 of Table 3. They were used to construct the interpolation plot shown in Fig. 1. The Ba II point has also been included in the figure but not in the interpolation fit. It is displaced from the curve by over 800 cm$^{-1}$ and we take this to be an indication of a sub-shell break. Figure 1 allows revised estimates of ΔT to be obtained for the elements in the lanthanum—europium and europium—thulium gaps. These also appear in column 3 of Table 3. For the uncertainty in the ΔT values, we note that doubling the standard deviation of the separations of the four points from the curve in Fig. 1 gives ±120 cm$^{-1}$. This transmits an uncertainty of ±170 cm$^{-1}$ to the ionization energy.

4. The Values of T(4fq6s)

The estimated and experimental values of ΔT and Δn^* are inserted into Eq. (1), which is then solved for n^q(6s) by adjusting its value in an iterative procedure. The n^q(6s) values in turn yield T(4fq6s), the amount by which the $4f^q$ parent of the lowest level of $4f^q$6s lies below the ionization threshold for the sequence $4f^q$ns. This threshold is the lowest level of the configuration $4f^q$. The results of the calculations are shown in Table 3.

5. The Second Ionization Energies

We write the energy of the lowest level of the $4f^q$6s configuration, relative to the ground state of the singly charged positive ion, as E(4fq6s). The amount by which it lies below the ionization threshold, $4f^q$, can be found by adding δ, its separation from the parent $4f^q$ level, to T(4fq6s). Now in most cases, the ground state configuration of the ion Ln$^+$ is $4f^q$6s and that of Ln$^{2+}$ is $4f^q$. When this is so, the second ionization energy is simply $(T$(4fq6s) + δ). Values of δ were calculated using Judd’s first equation as described in Sec. 3. His second equation8,13 is concerned with the interaction between $4f^q$ns levels with different $4f^q$ parent groups and the same value of J. The effect on δ is usually small.18 However, in Sm II, the lowest level of the $4f^6$ configuration arises from the $7F_0$ level of the $4f^6$ group and can be written as $(7F_0)6s$ with $J = 1/2$. It is close (~1300 cm$^{-1}$) to the upper of the two levels of $(7F_1)6s$, which arises from $7F_1$ but also has $J = 1/2$. We have checked Sugar and Reader’s calculation using Judd’s second formula and find, as they did, $\delta = 518$ cm$^{-1}$.

In lanthanum and gadolinium, the ground state configurations of the dipositive ion are $4f^7$5d1 rather than $4f^8$ and in lanthanum, cerium, and gadolinium, the ground state configurations of the singly charged ion are 5d2, 4f35d2, and 4f75d6. So, in obtaining the second ionization energies of these three elements, the quantity $(T$(4fq6s) + δ) must be adjusted to
accommodate the five aberrant ground state configurations. The spectra of La II, La III, Ce III, Gd II, and Gd III provide the necessary information and we can then write the ionization energies as \(T(4f^66s + \delta + CC) \) where CC represents the correction for the aberrant configurations. The required data are supplied and the calculations are performed in Table 4. Column 6 shows our estimated values of the ionization energies in cm\(^{-1}\). In column 7 these values have been converted to electron volts. We have used the conversion factor \(1 \text{ eV} = 8065.544 \text{ cm}^{-1} \).

Combining the uncertainty in the ionization energy arising from that in \(\Delta n^* \) \((\pm 200 \text{ cm}^{-1})\) with the contribution of \(\pm 170 \text{ cm}^{-1} \) transmitted by the uncertainty in \(\Delta T \) gives a total uncertainty of slightly less than \(\pm 270 \text{ cm}^{-1} \). Parameterizations of spectra\(^{17,20}\) suggest uncertainties in \(G_3 \) of the order of \(\pm 10 \text{ cm}^{-1} \), which translates to about \(\pm 30 \text{ cm}^{-1} \) in \(\delta \). The effect on the overall value is small. However, to allow for this and for possible systematic errors introduced by our interpolation methods, we take \(\pm 300 \text{ cm}^{-1} \) for the uncertainty in our estimated ionization energies. This is \(\pm 0.04 \text{ eV} \) to the nearest hundredth of an electron volt; hence the figure cited in Table 5.

Table 4 deals with the elements La \(\rightarrow \) Yb but the second ionization energy of lutetium is also often needed in studies of lanthanide systematics. It cannot be accessed by the method used thus far in this paper. The current NIST recommendation\(^1\) is \(13.9 \pm 0.4 \text{ eV} \). The Appendix investigates the origin of this figure and suggests a revised value of \(14.13 \pm 0.10 \text{ eV} \).

6. Discussion

In columns 2–4 of Table 5, our revised ionization energies are presented in electron volts and compared with the original values of Sugar and Reader\(^6\) and with the current NIST recommendations.\(^1\) For the eleven elements, Ce–Sm, Tb–Tm, and Lu, NIST gives figures that are identical to those of Ref. 6, which is cited as their source. Setting aside the case of lutetium, our selected values in column 5 combine our estimates in Table 4 with the NIST values for lanthanum, europium, and ytterbiurn that have small uncertainties of \(\pm 0.006 \text{ eV} \). The uncertainties of \(\pm 0.04 \text{ eV} \) for Ce–Sm and Gd–Tm are lower than the NIST values of \(\pm 0.07 \text{ eV} \) and we justify this by the new auxiliary data that we were able to exploit.

In the second half of the La \(\rightarrow \) Yb series, our values differ from the NIST values by \(\pm 0.025 \text{ eV} \). Ignoring lanthanum, in the first half of the series the difference is \(\pm 0.11 \text{ eV} \). Here our values are distinctly higher but the difference decreases from \(0.11 \text{ eV} \) in cerium to \(0.01 \text{ eV} \) in samarium. This is a consequence of our acknowledgement of the subshell break by removing barium from the \(\Delta T \) plot and replacing it with a value for lanthanum computed by exploiting the very accurate value of the second ionization energy. The effect of this change is felt most strongly immediately after lanthanum and then diminishes gradually.

It is interesting to compare the current NIST values for Ba \(\rightarrow \) Yb with our selection by calculating the internal energy change, \(\Delta U \), of the process

\[
M(4g^{2}4f^{6}6s^{2}) \rightarrow M^{2+}(g.4f^{8}) + 2e^{-}(g).
\]

(3)

If we use the lowest levels of the two configurations, \(\Delta U \) is equal to \((I_1 + I_2 + CC) \). In this case, CC is a correction needed in lanthanum, cerium, and gadolinium where the configurations required in Eq. (3) differ from the ground states in the spectra of La, La II, Ce I, Gd I, and Gd III. In total it amounts to \(-8002, -4763, \) and \(-8566 \text{ cm}^{-1} \) in lanthanum, cerium, and gadolinium, respectively.

Equation (3) is a process in which the 4f electrons are conserved and in which the two 6s electrons that are lost are only weakly coupled to the \(4f^8 \) core. Like the \(\Delta T \) variation in Fig. 1, we expect it to vary nearly smoothly as \(q \) changes from 1 to 14. Figure 2A shows the variation in \(\Delta U \) calculated from the current NIST recommendations\(^4\) for \(I_1 \) and \(I_2 \); Fig. 2B is obtained using the NIST recommendations for \(I_1 \) and our selected values of \(I_2 \). The \(I_1 \) values that are common to both plots have uncertainties of \(0.01 \text{ eV} \) in praseodymium and promethium; in other cases the uncertainties are \(\pm 0.006 \text{ eV} \).
The second ionization energy of lutetium cannot be accessed by the method used elsewhere in this paper. It is also poorly established; the current NIST value\(^1\) (13.9 eV) has an uncertainty of \(\pm 0.4\) eV and is an average derived by Sugar and Reader\(^6\) using two different methods.

The first method applied Eq. (1) to the first two levels of the 5d\(n\)s series in La II and the 4f\(^{14}\)5d\(n\)s series in Lu II. The \(^2\)D\(_{\frac{3}{2}}\) parent levels were used as series members. The positioning of this parent for 5d\(n\)s required a value of the Slater parameter \(G_2\), and Sugar and Reader used the value 1650 cm\(^{-1}\) for both La II and Lu II. More extensive parameterizations of the second spectra now suggest that \(G_2\) increases across the series: values for the 4f\(^{14}\)5d\(n\)s configuration increase from Nd II (1574 cm\(^{-1}\))\(^{21}\) through Gd II (2083 cm\(^{-1}\))\(^{22}\) and Er II (2356 cm\(^{-1}\))\(^{20}\) to Yb II (2437 cm\(^{-1}\))\(^{23}\). We have used this drift to estimate values of 1350 and 2500 cm\(^{-1}\) for La II and Lu II, respectively. Sugar and Reader used the lanthanum value to estimate the second ionization energy but, as noted earlier in this paper, a subsequent determination\(^{14}\) gave a more accurate value of 11.185 eV. So we have reversed their calculation, using the revised value of \(G_2\), to obtain \(\Delta n^* = 1.0589\) for the 5d\(n\)s series in La II.

We now require a value of \(\Delta n^*\) for the 4f\(^{14}\)5d\(n\)s series in Lu II. Sugar and Reader assumed that it was equal to 1.085, the value obtained from the Ba I spectrum. Our La II figure is significantly lower and we believe it provides a better basis for estimating the value for Lu II. If we use the centres of gravity of the configurations to calculate \(\Delta n^*\) values for the \(n\) series in Ba II (\(ns\)), Yb II (4f\(^{14}\)ns), and Hg II (4f\(^{14}\)5d\(n\)s), we obtain 1.052, 1.047, and 1.107, respectively. The difference between the Ba II value and our re-calculated La II (5d\(n\)s) figure is 0.007 and if this same increment is applied to Yb II and Lu II (4f\(^{14}\)5d\(n\)s), then \(\Delta n^*(Lu II) = 1.054\). If we assume a linear increase between Yb II and Hg II, we get 1.053. We have therefore repeated Sugar and Reader’s calculation with \(\Delta n^* = 1.054\) and our revised value of \(G_2\); the second ionization energy is then 114 500 cm\(^{-1}\) or 14.20 eV. The \(\Delta n^*\) values for the \(ns\) series in Ba II, La II, Sc II, Y II, and Yb II lie between 1.036 and 1.059 with a standard deviation of 0.0082. We double this and take \(\pm 0.0164\) as the uncertainty in \(\Delta n^*(Lu II)\), which is equivalent to \(\pm 0.09\) eV.

In the method just described, the lower parent level is calculated using an estimated interelectronic repulsion parameter, \(G_2\); the higher is taken as the centre of gravity of the \(J = 1\) and 2 levels. It should be noted that the ionization energy is relatively insensitive to the chosen value of \(G_2\); a change of 500 cm\(^{-1}\) alters the calculated ionization energy by only about 100 cm\(^{-1}\).

However, we can avoid the need for \(G_2\) by using the centre of gravity for both parent levels. The La II value of \(\Delta n^*\) then becomes 1.062. Now the Ba II/La II difference is 0.010, which when added to \(\Delta n^*\) (Yb II) gives \(\Delta n^*(Lu II) = 1.057\). The resulting ionization energy is 114 700 cm\(^{-1}\) or 14.22 eV. Thus, these two ways of conducting the 5d\(n\)s calculation give similar values with a common uncertainty of \(\pm 0.09\) eV.

Acknowledgments

The authors are very grateful for the extensive criticisms and suggestions made by a reviewer.

7. Appendix: The Second Ionization Energy of Lutetium

In Fig. 2(A), the second order polynomial fit to the values at \(q = 1–14\) is considerably less good in the first half of the series than in the second, the lanthanum point lying well above the curve and the points with \(q = 2–4\) below it. As noted earlier, we believe this arises from a failure to take account of the subshell break revealed in Fig. 1. When we move to Fig. 2(B), we believe this arises from a failure to take account of the Fig. 2(B) correlation, and ions.

In Fig. 2(A), the second order polynomial fit to the values at \(q = 1–14\) is considerably less good in the first half of the series than in the second, the lanthanum point lying well above the curve and the points with \(q = 2–4\) below it. As noted earlier, we believe this arises from a failure to take account of the subshell break revealed in Fig. 1. When we move to Fig. 2(B), we believe this arises from a failure to take account of the Fig. 2(B) correlation, and ions.
Sugar and Reader’s second figure was derived from the first two levels of the \(4f^{14}6s^{2}d\) series in Lu II. In this case they used the centres of gravity of configurations as series members. That of \(6s5d\) lies at 14 181 cm\(^{-1}\). In \(6s6d\), the \(^3D_2\) level has not been observed but they used the positions of the \(^3D_1, ^3D_2,\) and \(^3D_3\) levels to place the centre of gravity of the configuration at 72 444 cm\(^{-1}\). This gives \(\Delta T = 58 263\) cm\(^{-1}\).

Again, the choice of \(\Delta n^*\) is crucial. Sugar and Reader used \(\Delta n^* = 1.288\) obtained from the \(6s\) series in Ba I. Using the centres of gravity of the configurations in Ba I, we find \(\Delta n^* = 1.256\). However, other spectra now provide more convincing estimates. There are data on Yb I, which is iso-electronic with Lu II. This gives \(\Delta n^* = 1.129\). We can also obtain a figure for La II by combining Sugar and Reader’s method of calculating the centres of gravity in this spectrum with the accurate second ionization energy \(^{11}\) and our revised value of \(G_2\). This puts the unperturbed centre of gravity of \(6s5d\) at 3383 cm\(^{-1}\) and gives \(\Delta T = 61 283\) cm\(^{-1}\) with \(\Delta n^* = 1.258\).

For pairs of cases in which the transition is of the type \([nsl] \rightarrow [n'sd]\), the second spectrum seems usually to have a slightly higher \(\Delta n^*\) value than the first. For Ca I/Sr II the increase is 0.19; for Sr I/Y I it is 0.13. However, for Ba II/La II it is only 0.002 suggesting a similar value for Yb II/Lu II and \(\Delta n^*(Lu II) = 1.13\). Alternatively, if we calculate \(\Delta n^*\) from \(5d \rightarrow 6d\) transitions in the Ba II spectrum and from \([6s5d \rightarrow 6s6d]\) transitions in Lu II we get 1.147 and 1.258, respectively; insertion of the 6s electron increases \(\Delta n^*\) by 0.11. As the value for Yb II is 1.072, this suggests that \(\Delta n^*(Lu II) = 1.18\). We take \(\Delta n^*(Lu II) = 1.16 \pm 0.04\). This yields an ionization energy of 113 754 cm\(^{-1}\) or 14.10 ± 0.16 eV.

In 1965, Sugar and Reader obtained 14.06 eV by their first method and 13.60 eV by the second. As shown above, newer data have brought the two methods into closer agreement at a higher figure of 14.18 ± 0.08 eV.

Our revised value has some support from thermo-chemical calculations of the kind that provided the first complete sets of third ionization energies of the lanthanides.\(^{24,25}\) They combined Born–Haber cycles with the assumption of a smooth variation in the lattice energies of trivalent lanthanide compounds consistent with the lanthanide contraction. In later studies, Morss\(^{26}\) pointed out that these methods indicated that the second ionization energy for lutetium was 14.14 eV. That value was accepted by subsequent workers\(^{27}\) in similar calculations. Here we apply a modified version of Morss’ method.

The oxides \(Sm_2O_3 \rightarrow Lu_2O_3\) all have the cubic C-type \(M_2O_3\) structure in which the lanthanide ions are in distorted octahedral coordination.\(^{28}\) Their lattice enthalpies, \(\Delta H^0(M_2O_3(s))\), are the standard enthalpy change, at 298.15 K, of the reaction,

\[
2M^{3+}(g) + 3O^{2-}(g) \rightarrow M_2O_3(s). \quad (A1)
\]

In Fig. 3, the values of \(1/2\Delta H^0(M_2O_3(s))\) for the sequence \(Sm_2O_3 \rightarrow Yb_2O_3\), obtained from data in Paper II\(^{33}\) of this series, are plotted against the reciprocal of \(\{r(M^{1+}) + r(O^{2-})\}\). Here, \(r(M^{1+})\) is the Shannon radius\(^{29}\) in six coordination and \(r(O^{2-})\) = 1.38 Å. The fit is superior to that obtained by a plot against \(q\), is linear within the experimental uncertainties, and in linear form is more suited to extrapolation. The Shannon radii provide a lutetium ordinate of 0.4462 Å\(^{-1}\) which gives \(1/2\Delta H^0(Lu_2O_3(s)) = -6689\) kJ mol\(^{-1}\). If that is combined with \(\Delta_1H^0(Lu,g)\),

\[
\Delta_1H^0(O^{2-},g), \text{ and the first and third ionization energies of lutetium in Paper II.}\]

Finally, there are two recent relativistic quantum mechanical calculations, the first being 14.05 eV,\(^{30}\) which was subsequently revised to 13.98 ± 0.04 eV.\(^{31}\) The uncertainty in the latter value was the root mean square of a sample of differences between experimental values and the authors’ calculated values. We include this in our assessment by making the uncertainty consistent with our conservative policy through a doubling of the sample standard deviation of the differences for the five experimental values for which the uncertainty is less than 100 cm\(^{-1}\). This gives 13.98 ± 0.13 eV. If that is combined with the value derived from spectroscopic data (14.18 ± 0.08 eV) and the thermo-chemical figure (14.13 ± 0.10 eV), the outcome is 14.13 ± 0.06 eV. However, this range does not span that of the three components (0.20 eV) which raises the possibility of systematic errors in at least one of the three. An allowance can be made for this at the one standard deviation level by supplementing the usual method of combining uncertainties with an additional contribution that depends upon the deviations of the individual values from the weighted mean.\(^{32}\) This method converts the standard deviations of our three values (0.065, 0.05, and 0.04 eV) into a combined uncertainty of ±0.05 eV and two standard deviations become ±0.10 eV. Our final recommended value is therefore 14.13 ± 0.10 eV.

Our proposed uncertainty is more than double that in the second ionization energies of the other lanthanide elements. In addition, the position of lutetium just beyond the end of the lanthanide series makes thermodynamic data on this element especially important in lanthanide systematics. Further study of Lu II is therefore more desirable than that of any of the other second spectra that we have considered in this paper.

8. References