The Open UniversitySkip to content

Basal ryanodine receptor activity suppresses autophagic flux

Vervliet, Tim; Pintelon, Isabel; Welkenhuyzen, Kirsten; Bootman, Martin D.; Bannai, Hiroko; Mikoshiba, Katsuhiko; Martinet, Wim; Nadif Kasri, Nael; Parys, Jan B. and Bultynck, Geert (2017). Basal ryanodine receptor activity suppresses autophagic flux. Biochemical Pharmacology, 132 pp. 133–142.

Full text available as:
Full text not publicly available
Due to copyright restrictions, this file is not available for public download until 18 March 2018
Click here to request a copy from the OU Author.
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


The inositol 1,4,5-trisphosphate receptors (IP3Rs) and intracellular Ca2+ signaling are critically involved in regulating different steps of autophagy, a lysosomal degradation pathway. The ryanodine receptors (RyR), intracellular Ca2+-release channels mainly expressed in excitable cell types including muscle and neurons, have however not yet been extensively studied in relation to autophagy. Yet, aberrant expression and excessive activity of RyRs in these tissues has been implicated in the onset of several diseases including Alzheimer’s disease, where impaired autophagy regulation contributes to the pathology. In this study, we determined whether pharmacological RyR inhibition could modulate autophagic flux in ectopic RyR-expressing models, like HEK293 cells and in cell types that endogenously express RyRs, like C2C12 myoblasts and primary hippocampal neurons. Importantly, RyR3 overexpression in HEK293 cells impaired the autophagic flux. Conversely, in all cell models tested, pharmacological inhibition of endogenous or ectopically expressed RyRs, using dantrolene or ryanodine, augmented autophagic flux by increasing lysosomal turn-over (number of autophagosomes and autolysosomes measured as mCherry-LC3 punctae/cell increased from 70.37 ± 7.81 in control HEK RyR3 cells to 111.18 ± 7.72 and 98.14 ± 7.31 after dantrolene and ryanodine treatments, respectively). Moreover, in differentiated C2C12 cells, transmission electron microscopy demonstrated that dantrolene treatment decreased the number of early autophagic vacuoles from 5.9 ± 2.97 to 1.8 ± 1.03 per cellular cross section. The modulation of the autophagic flux could be linked to the functional inhibition of RyR channels as both RyR inhibitors efficiently diminished the number of cells showing spontaneous RyR3 activity in the HEK293 cell model (from 41.14% ± 2.12 in control cells to 18.70% ± 2.25 and 9.74% ± 2.67 after dantrolene and ryanodine treatments, respectively). In conclusion, basal RyR-mediated Ca2+-release events suppress autophagic flux at the level of the lysosomes.

Item Type: Journal Item
Copyright Holders: 2017 Elsevier
ISSN: 1873-2968
Keywords: Dantrolene; Ryanodine receptor; Alzheimer’s disease; Autophagy; Lysosome; Ca2+
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Health and Wellbeing PRA (Priority Research Area)
Item ID: 49388
Depositing User: Martin Bootman
Date Deposited: 12 May 2017 10:32
Last Modified: 19 Dec 2017 09:39
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU