Morphometric Characterisation of Eskers Associated with an Extant Mid-Latitude Glacier on Mars

How to cite:

Link(s) to article on publisher’s website:
https://www.hou.usra.edu/meetings/lpsc2017/pdf/1238.pdf

For guidance on citations see FAQs.
Morphometric characterisation of eskers associated with an extant mid-latitude glacier on Mars.

Frances E.G. Butcher1, C. Gallagher2, N.S. Arnold3, M.R. Balme1, S.J. Conway4, S.R. Lewis1, A. Hagemann1

1The Open University, UK (frances.butcher@open.ac.uk), 2University College Dublin, Ireland, 3University of Cambridge, UK, 4CNRS, LPG Nantes, France.

Evidence for basal melting of modern putative debris-covered glaciers (DCGs) on Mars is extremely rare.

- Modern DCGs are likely frozen to their beds, but has this always been the case?
- Gallagher and Balme [1] identified sinuous ridges in the foreland of a late-Amazonian-aged (~150 Ma) DCG in Phlegra Montes (Figs 1-3).
- They interpreted these ridges as young eskers (Fig 4) – the first of their kind identified in association with a modern DCG on Mars.

Eskers are diagnostic of glacial melting.

- Eskers are ridges of sediment deposited by meltwater in ice-walled, typically subglacial drainage conduits, and subsequently exposed by glacier retreat (Fig 4).
- Their morphometry is strongly controlled by the geometry of their parent meltwater conduits which, in turn, is controlled by hydraulic conditions within them [e.g. 2].

We characterise candidate esker morphometry with new high-resolution 3D data

Plan-view geometry

<table>
<thead>
<tr>
<th>Segments</th>
<th>Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM DA CA</td>
<td>PM DA CA</td>
</tr>
<tr>
<td>Min</td>
<td>1.00 1.00 -</td>
</tr>
<tr>
<td>Median</td>
<td>1.02 1.02 1.04 1.07 1.20 1.06</td>
</tr>
<tr>
<td>Mean</td>
<td>1.05 0.94 1.06 1.08 1.10 1.08</td>
</tr>
<tr>
<td>Max</td>
<td>1.22 1.75 2.21 1.25 1.91 2.45</td>
</tr>
</tbody>
</table>

- Similar length and sinuosity to Canadian eskers (Fig 7, Table 1).
- Similar sinuosity to, but shorter than, ancient (Early Hesperian) putative eskers near Mars’ south pole (Dorsa Argentae) (Table 1).
- Known candidate eskers on Mars occupy the full range of terrestrial esker lengths (10s m – 100s km).

Cross-sectional morphometry

- Similar heights to Icelandic eskers (< 14 m [6]) (Fig 8a).
- Widths more similar to terrestrial eskers (< 10s m – 2 km [2,6]) than Dorsa Argentae [4] (Fig 8b).
- Intermediate side slopes between Icelandic eskers (11-22° [6]) and Dorsa Argentae, Mars [4] (Fig 8c).
- Lower side slopes than terrestrial eskers could result from fundamental differences in subglacial hydrology between Earth and Mars, which should be explored further.

Ongoing work

Phlegra Montes candidate esker morphometery

- Tests for esker-like response of ridge height to longitudinal bed slope.

NEW DCG-linked candidate esker in a similar graben setting

- Abstract #1234, this conference.
- Supports the hypothesis that elevated geothermal heat was a prerequisite for recent basal melting of mid-latitude glaciers on Mars [1].

Modelling environmental conditions required for basal melting in Phlegra Montes

- Exploring atmospheric temperature and geothermal heat scenarios using the JPL/University of California Ice Sheet System Model (ISSM) [8].

References:

Acknowledgements: FEGB is funded by STFC grant ST/N00421X/1 and is grateful for travel support from the 2017 PSI Pierazzo International Student Travel Award. We are grateful to R.D. Storrar for the Canadian esker data.