Development of MIL-101(Cr)/GrO Composites for adsorption heat pump applications

Elsayed, Eman; Wang, Haiyan; Anderson, Paul A.; Al-Dadah, Raya; Mahmoud, Saad; Navarro, Helena; Ding, Yulong and Bowen, James (2017). Development of MIL-101(Cr)/GrO Composites for adsorption heat pump applications. Microporous and Mesoporous Materials, 244 pp. 180–191.

DOI: https://doi.org/10.1016/j.micromeso.2017.02.020

Abstract

Adsorption heat pumps can be used for generating heating, cooling, seasonal energy storage and water desalination applications. Metal-organic frameworks (MOFs) are hybrid porous materials with high surface area and superior adsorption characteristics compared to conventional adsorbents. MIL-101(Cr) has a large pore size with water vapour adsorption capacity up to 1.5 gH2O gads–1 and high cyclic stability thus has the potential to be used in adsorption heat pumps. This work investigates the enhancement of the thermal conductivity and water adsorption characteristics of MIL-101(Cr) using hydrophilic graphene oxide. Two methods have been used to develop MIL-101(Cr)/GrO composites. The first method was through physical mixing between MIL-101(Cr) and GrO while the other was through incorporating the GrO during the synthesis process of MIL-101(Cr). The composites and MIL-101(Cr) were characterized in terms of their structure, water adsorption uptake, BET surface area, particle size, thermal gravimetric analysis, SEM images and thermal conductivity measurements. Results showed that introducing low amounts of GrO (<2%) to the neat MIL-101(Cr) enhanced the water adsorption characteristics at high relative pressure but enhanced the heat transfer properties by 20-30% while using more than 2% of GrO reduced the water adsorption uptake but significantly enhanced the thermal conductivity by more than 2.5 times.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About

Recommendations