The Open UniversitySkip to content
 

A Heterosynaptic Spiking Neural System for the Development of Autonomous Agents

Jimenez-Romero, Cristian (2017). A Heterosynaptic Spiking Neural System for the Development of Autonomous Agents. PhD thesis The Open University.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (10MB) | Preview
Google Scholar: Look up in Google Scholar

Abstract

Artificial neural systems for computation were first proposed three quarters of a century ago and the concepts developed by the pioneers still shape the field today. The first generation of neural systems was developed in the nineteen forties in the context of analogue electronics and the theoretical research in logic and mathematics that led to the first digital computers in nineteen forties and fifties. The second generation of neural systems implemented on digital computers was born in the nineteen fifties and great progress was made in the subsequent half century with neural networks being applied to many problems in pattern recognition and machine learning. Through this history there has been an interplay between biologically inspired neural systems and their implementation by engineers on digital machines. This thesis concerns the third generation of neural networks, Spiking Neural Networks, which is making possible the creation of new kinds of brain inspired computing architectures that offer the potential to increase the level of realism and sophistication in terms of autonomous machine behaviour and cognitive computing. This thesis presents the development and demonstration of a new theoretical architecture for third generation neural systems, the Integrate-and-Fire based Spiking Neural Model with extended Neuro-modulated Spike Timing Dependent Plasticity capabilities. This proposed architecture overcomes the limitation of the homosynaptic architecture underlying existing implementations of spiking neural networks that it lacks a natural spike timing dependent plasticity regulation mechanism, and this results in ‘run away’ dynamics. To overcome this ad hoc procedures have been implemented to overcome the ‘run away’ dynamics that emerge from the use of spike timing dependent plasticity among other hebbian-based plasticity rules. The new heterosynaptic architecture presented, explicitly abstracts the modulation of complex biochemical mechanisms into a simplified mechanism that is suitable for the engineering of artificial systems with low computational complexity. Neurons work by receiving input signals from other neurons through synapses. The difference between homosynaptic and heterosynaptic plasticity is that, in the former the change in the properties of a synapse (e.g. synaptic efficacy) depends on the point to point activity in either of the sending and receiving neurons, in contrast for heterosynaptic plasticity the change in the properties of a synapse can be elicited by neurons that are not necessary presynaptic or postsynaptic to the synapse in question. The new architecture is tested by a number of implementations in simulated and real environments. This includes experiments with a simulation environment implemented in Netlogo, and an implementation using Lego Mindstorms as the physical robot platform. These experiments demonstrate the problems with the traditional Spike timing dependent plasticity homosynaptic architecture and how the new heterosynaptic approach can overcome them. It is concluded that the new theoretical architecture provides a natural, theoretically sound, and practical new direction for research into the role of modulatory neural systems applied to spiking neural networks.

Item Type: Thesis (PhD)
Copyright Holders: 2016 The Author
Keywords: computational intelligence; artificial intelligence; natural computation; computational neuroscience
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Item ID: 48888
Depositing User: Cristian Jimenez-Romero
Date Deposited: 03 Apr 2017 09:23
Last Modified: 05 Apr 2017 16:33
URI: http://oro.open.ac.uk/id/eprint/48888
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU