The Open UniversitySkip to content
 

Plant, soil and microbial controls on grassland diversity restoration: a long-term, multi-site mesocosm experiment

Fry, Ellen L.; Pilgrim, Emma S.; Tallowin, Jerry R.B.; Smith, Roger S.; Mortimer, Simon R.; Beaumont, Deborah A.; Simkin, Janet; Harris, Stephanie J.; Sheil, Robert S.; Quirk, Helen; Harrison, Kate A.; Lawson, Clare S.; Hobbs, Phil .J and Bardgett, Richard D. (2017). Plant, soil and microbial controls on grassland diversity restoration: a long-term, multi-site mesocosm experiment. Journal of Applied Ecology, 54(5) pp. 1320–1330.

Full text available as:
Full text not publicly available
Due to copyright restrictions, this file is not available for public download until 31 January 2018
Click here to request a copy from the OU Author.
DOI (Digital Object Identifier) Link: https://doi.org/10.1111/1365-2664.12869
Google Scholar: Look up in Google Scholar

Abstract

1. The success of grassland biodiversity restoration schemes is determined by many factors; as such their outcomes can be unpredictable. There is a need for improved understanding of the relative importance of belowground factors to restoration success, such as contrasting soil type and management intensities, as well as plant community composition and order of assembly.

2. We carried out an eight-year mesocosm experiment across three locations in the UK to explore the relative and interactive roles of various aboveground and belowground factors in the establishment of target species, to determine general constraints on grassland restoration. Each location had a series of mesocosms with contrasting soil types and management status, which were initially sown with six grasses typical of species-poor grasslands targeted for restoration.

3. Over five years, sets of plant species were added, to test how different vegetation treatments, including early-coloniser species and the hemiparasite Rhinanthus minor, and soil type and management, influenced the establishment of target plant species and community diversity.

4. The addition of early-coloniser species to model grasslands suppressed the establishment of target species, indicating a strong priority effect. Soil type was also an important factor, but effects varied considerably across locations. In the absence of early-coloniser species, low soil nutrient availability improved establishment of target species across locations, although R. minor had no beneficial effect.

5. Synthesis and applications. Our long-term, multi-site study indicates that successful restoration of species rich grassland is dependent primarily on priority effects, especially in the form of early-coloniser species that suppress establishment of slow-growing target species. We also show that priority effects vary with soil conditions, being stronger in clay than sandy soils, and on soils of high nutrient availability. As such, our work emphasises the importance of considering priority effects and local soil conditions in developing management strategies for restoring plant species diversity in grassland.

Item Type: Journal Item
Copyright Holders: 2017 Wiley
ISSN: 0021-8901
Project Funding Details:
Funded Project NameProject IDFunding Body
Not SetBD1451DEFRA (Department for Environment Food and Rural Affairs)
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 48884
Depositing User: Clare Lawson
Date Deposited: 21 Apr 2017 13:41
Last Modified: 09 Jan 2018 16:13
URI: http://oro.open.ac.uk/id/eprint/48884
Share this page:

Altmetrics

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU