Recognition of massive Upper Cretaceous carbonate bodies as olistoliths using rudist bivalves as internal bedding indicators (Campanian Merfeg Formation, Central Tunisia)

How to cite:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Accepted Manuscript

Recognition of massive Upper Cretaceous carbonate bodies as olistoliths using rudist bivalves as internal bedding indicators (Campanian Merfeg Formation, Central Tunisia)

M.Hédi Negra, Peter W. Skelton, Eulàlia Gili, F. Xavier Valldeperas, Tom Argles

PII: S0195-6671(16)30110-0
DOI: 10.1016/j.cretres.2016.06.003
Reference: YCRES 3409

To appear in: Cretaceous Research

Received Date: 4 March 2016
Revised Date: 10 June 2016
Accepted Date: 10 June 2016

Please cite this article as: Negra, M.H., Skelton, P.W., Gili, E., Valldeperas, F.X., Argles, T., Recognition of massive Upper Cretaceous carbonate bodies as olistoliths using rudist bivalves as internal bedding indicators (Campanian Merfeg Formation, Central Tunisia), Cretaceous Research (2016), doi: 10.1016/j.cretres.2016.06.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Recognition of massive Upper Cretaceous carbonate bodies as olistoliths using rudist bivalves as internal bedding indicators (Campanian Merfeg Formation, Central Tunisia)

M. Hédi Negra†, Peter W. Skelton*, Eulàlia Gili‡, F. Xavier Valldeperas‡, Tom Argles*

†Université de Tunis El Manar, Faculté des Sciences de Tunis, Département de Géologie, UR Pétrologie sédimentaire et cristalline, 2092 El Manar, Tunis, Tunisia (E-mail: hedinegra@yahoo.fr; corresponding author)

*Department of Earth, Environment and Ecosystems, The Open University, Milton Keynes MK7 6AA, UK (E-mail: pwskelto@waitrose.com)

‡Departament de Geologia, Universitat Autònoma de Barcelona, Edifici C, Bellaterra, 08193 Barcelona, Spain
ABSTRACT

The Merfeg Formation (upper Campanian) of Central Tunisia crops out around the southwestern periclinal termination of Jebel el Kébar, near Sidi Bouzid. At its base is a massively bedded unit of locally dolomitized, sparsely fossiliferous micritic to microbioclastic limestone that contains several discrete, plurimetric mound-like bodies (lithosomes) of micritic limestone containing locally abundant rudists and corals. The lithosomes are separated laterally from one another by megabreccias and conglomerates containing clasts of similar lithology and are overlain, with sharp contact, by onlapping argillaceous pelagic limestones, within which are intercalated at least two more, somewhat thinner rudist/coral limestone units. This complex of facies is laterally equivalent to thicker, deep platform limestones of the Abiod Formation to the north and east, and to restricted carbonate platform facies of the Berda Formation to the south and west. The lithosomes have previously been interpreted as in situ downslope mudmounds that became capped by rudist and coral formations, cemented, and then surrounded by erosively emplaced debris flows. However, our detailed studies of rudist orientations imply variable and in some cases relatively high angles of bedding within the lithosomes with respect to the regional dip of the host strata. Such steep inclinations of internal bedding are unlikely to have been primary. Accordingly, we propose an alternative interpretation that the lithosomes were platform-derived olistoliths, emplaced along with the associated debris flow deposits. Micritic beds, neighbouring the olistoliths are of variable thickness and contain rare large inoceramids and randomly oriented rudists, as well as locally developed microbioclastic beds with planar and small-scale swaley cross stratification. These micritic and microbioclastic beds are, by contrast, interpreted as primary (i.e., non-olistostromal) slope deposits. Whether the proposed catastrophic collapses
of the original platform margin were induced by sea-level fall or seismically triggered (or a combination of the two) remains uncertain.

Key words Olistoliths, rudist limestones, Late Cretaceous, Tunisia.
1. Introduction

A notable feature of the expansive epeiric seas of the Cretaceous Period was episodic
progradation of vast carbonate platforms or ramps into neighboring basins in low to mid-
palaeolatitudes (Simo, Scott, & Masse, 1993; Skelton, 2003). According to basin
configuration and dynamic geological context, the flanking slopes of these platforms or ramps
varied from being gentle (frequently less than 3°) to relatively steep (in excess of 10°), hence
potentially unstable, especially where accentuated by syn-depositional faulting (Ross &
Skelton, 1993). Slope deposits could thus incorporate localized carbonate bodies, hereafter
referred to as lithosomes, of either autochthonous or allochthonous origin (e.g., Rosales,
Fernández-Mendiola, & Garcia-Mondéjar, 1995; Graziano, 2001; Korbar et al., 2001; Moro &
Ćosović, 2013 and others cited below); and in some cases distinguishing between the two can
be problematical (e.g., Trevisani & Cestari, 2007).

During the Late Cretaceous to Eocene interval, tectonic plate movements gave rise to
instabilities that affected platforms and ramps widely around the Mediterranean Tethyan
region, and which led, in combination with relative sea-level changes, to various forms of
mass transport on their margins and slopes. Examples have been described from northern
Syria (Al-Riyami & Robertson, 2000), around the Adriatic margins (Croatia, Korbar et al.,
2001; Friuli Basin, Ogata et al., 2014; Maiella platform margin, Mutti, Davoli, Tinterri, &
Zavala, 1996, and Stössel, 1999; Apulia, Gargano-Murge region, Borgomano & Philip, 1989,
Pieri & Laviano, 1989, and Borgomano, 2000, and the Salento Peninsula, Bosellini & Parente,
1994), in the southern Alps (Doglioni & Bosellini, 1987) and the northern calcareous Alps in
Austria (Sanders & Pons, 1999), and in central Tunisia (Negra, 2003).
The response of carbonate deposits to these instabilities was related to their degree of lithification. During tectonic and/or seismic activity, early lithified carbonates deposited on platform and/or distally steepened ramp margins commonly disintegrated into olistoliths and blocks, susceptible to sliding and gravity transportation. Proximally, however, olistoliths may not be clearly distinguishable from autochthonous carbonate lithosomes, particularly where massive, homogeneous bedding and highly bioturbated lithologies may make the recognition of bedding dislocation and rotation difficult. The well exposed and continuous outcrops of the Campanian Merfeg rudist-rich carbonates in Jebel El Kébar (Central Tunisia) provide an instructive example for investigation of this problem.

Jebel el Kébar is located 10 km south of Sidi Bouzid town (Fig. 1A) and it has attracted considerable interest because of the presence of impressively large, mound-like micritic lithosomes that contain locally abundant rudists, corals and associated biota (Khessibi, 1978; Negra, 1984; M’Rabet, Negra, Purser, Sassi, & Ben Ayed, 1986; Negra, 1987; Negra & Philip, 1987; Negra, Purser, & M’Rabet, 1995; Negra & Gili, 2004). These rudist/coral-bearing lithosomes are situated stratigraphically at the base of the upper Campanian Merfeg Formation, the outcrop of which in Jebel el Kébar is limited to the southwestern periclinal closure of the anticline (Fig. 1B), especially along the vertical to overturned SE limb of the fold (Fig. 1C).

Previous studies of the rudist/coral-bearing lithosomes (cited above) established their lithological character, palaeontological content and stratigraphical position, and devoted special attention to their diagenesis (see also Negra & Loreau, 1988). These studies demonstrated that the lithosomes had undergone early lithification and had been partly eroded
and surrounded by megabreccias and conglomerates during the Late Cretaceous. According to the interpretation developed in these works, they had formed as in situ downslope mudmounds that became capped by rudist and coral formations, cemented, then surrounded by erosively emplaced debris flows, and finally buried in pelagic sediments (Negra et al., 1995).

The present study focuses on the orientations of the elongate attached (right) valves of hippocritids within the giant rudist/coral-bearing lithosomes. These orientational data are plotted as equal-area stereographic projections and original bedding within the lithosomes then inferred by reference to the orientations of known autochthonous to parautochthonous hippocritid associations previously investigated by the authors in Santonian platform deposits of the southern Central Pyrenees. The results of this comparison are then used to assess the likely origin of the lithosomes.

2. Geological setting

2.1. Regional palaeogeographical setting

Following a late Cenomanian deepening event (Philip & Floquet, 2000; Caron et al., 2006; Zagrarni, Negra, & Hanini, 2008; Negra, Zagrarni, Hanini, & Strasser, 2011), much of the North African Maghreb domain became occupied by shallow carbonate platform facies, extending especially across central and southern Tunisia (Razgallah et al., 1994). The Cenomanian-Turonian transition was marked by an anoxic event, evidence for which is well expressed in Tunisian successions (Abdallah & Meister, 1996; Robaszynski et al., 1993; Zagrarni, Negra, & Melki, 2003; Zagrarni et al., 2008). It was accompanied by a general demise of carbonate platforms and mass extinction of rudists (Philip & Airaud-Crumiere,
In central and southern Tunisia, the anoxic event was followed by a shallowing trend of deposition accompanied by the re-development of rudist-rich platform carbonates during the early-middle Turonian (Bireno Formation: Zagrarni, 1999; Zagrarni et al., 2003). These shallow marine deposits are overlain by marlstones of late Turonian-early Campanian age, constituting the Aleg Formation. Well-developed in central and southern Tunisia, the latter contains ammonites and planktonic foraminifers associated with echinoids, oysters and benthic foraminifers. This relatively open and deep marine Aleg sedimentation was interrupted during the Coniacian by a more or less generalized shallowing trend mainly expressed by the appearance, at least locally, of platform carbonates, locally rich in rudists and forming the Douleb Member (Bismuth, Boltenhagen, Donze, Le Fevre, & Saint-Marc, 1981). The shallowing seems to have been associated with extensional faulting that created horsts and grabens. This irregular Coniacian topography was sealed during the Santonian-early Campanian interval, by pelagic marlstones of the upper Aleg Formation.

The major tectonic event of Late Cretaceous times occurred during the late Santonian, consisting mainly of compression directly linked with a change in the poles of rotation for the opening of the Atlantic (Guiraud & Bosworth, 1997), which were in turn to lead eventually to the gradual closure of the Tethyan Ocean (Skelton, 2003). Numerous previous sedimentary basin-fills along the southern Tethyan margin, from Morocco to the Syrian Arc, were folded (Guiraud, 1998; Guiraud & Bosworth, 1997). At the same time, in Oman, along the northeastern margin of Arabia, the obduction of ophiolites, which had commenced in the Turonian, was proceeding (Lippard, Skelton, & Gass, 1986; Bechennec, Le Métour, Platel, & Roger, 1995). After the late Santonian tectonic event, several phases of rifting and downwarping or passive margin development occurred during Campanian-Maastrichtian time (Philip & Floquet, 2000).
The Campanian was marked by a new broad transgression, with relatively little tectonic activity in the peri-Tethyan continental platforms (Philip & Floquet, 2000; Bey, Kuss, Premoli Silva, Negra, & Gardin, 2012). From North Africa to Arabia, broad margins flanked the southern side of the Tethys Ocean. The Campanian deposits are predominantly of marine origin and richly fossiliferous.

A general NW-SE structural trend (N140) appears to characterize the main Campanian-Maastrichtian basin orientation. Late Campanian-early Maastrichtian sedimentation (Figs. 1A, 2) was dominated by well-bedded micritic limestones rich in coccoliths and planktonic foraminifers associated with echinoids, inoceramids and benthic foraminifers. These widespread deposits suggest the development of a relatively ‘deep platform’ frequently fragmented into numerous sub-platforms separated by basins (Negra, 1994). This platform/basin ensemble gave rise to an irregular Campanian topography that was sealed during the late Campanian (Globotruncanita calcarata biozone) by predominantly marly sediments. At a global scale, this period around the Campanian-Maastrichtian boundary, corresponds, in several areas, to a maximum of flooding (Matsumoto, 1980).

Some of the ‘deep platforms’ were directly connected with shallower platforms and/or emerged areas. One significant example of the latter was the Sidi Bouzid-Kasserine island (Negra, 1994; Negra et al., 1995; Kadri, Essid, & Merzeraud, 2015) in Central Tunisia.
(Figure 1A), which had started to emerge from Turonian times. The transition from emerged areas to deep platforms and basins was generally progressive, in the form of ramps. Hence, regional lateral equivalents to the Merfeg Formation are, to the south, the Berda Formation, consisting of bioclastic carbonates with bird eyes and mud cracks, and, to the north and east, deep-platform deposits of the Abiod Formation (Negra et al., 1995). Massively bedded micritic and microbioclastic limestones incorporating large lithosomes containing rudists and corals, together with conglomerates comprising clasts of similar material, constitute one of the most proximal facies relative to the palaeo-islands (Negra, 1984, 1987, 1994, 2003; M’Rabet et al., 1986; Negra & Philip, 1987, Negra et al., 1995, Negra & Gili, 2004). In Tunisia, the Campanian rudist- and coral-rich facies crop out only in two areas: Jebel el Kébar, in the Sidi Bouzid area (Figure 1A), and Jebel Serraguia, 100km to the south west of Kasserine city. Transition from such proximal facies to well bedded pelagic limestones, which is progressive, is mainly expressed by decreasing proportions of redeposited material. Thus, olistoliths and conglomerates containing shallow marine facies are frequently interbedded within well-bedded pelagic micritic limestones. Size and volume of the redeposited material decreases distally from the shallow areas. In addition, organized gravitational sequences, such as debris-flow deposits and turbidites (Negra, 1994; Negra, 2003) have been identified preferentially toward relatively distal areas.

To summarize, in contrast to the Cenomanian (Gattar), Turonian (Bireno), and Coniacian (Douleb) platforms which were regionally extensive, the Campanian (Abiod) platforms appear to have been fragmented and with variable bathymetries. At least some of these platforms correspond to horsts bounded by Campanian faults, which show NW-SE, N-S or WSW-ENE orientations (Bey et al., 2012).
2.2. Stratigraphical situation and character of the rudist/coral-bearing lithosomes in the Merfeg Formation

In the study area, the upper Campanian Merfeg Formation overlies Coniacian to lower-middle Campanian marlstones of the Aleg Formation and is in turn overlain unconformably by claystones, siltstones and conglomerates of the Mio-Pliocene Béglia and Segui formations (Fig. 2).

The Aleg Formation biota consists mainly of planktonic and benthic foraminifers, irregular echinoids and scarce ammonites. The upper part of the formation includes intercalations of argillaceous limestone, heralding the relatively shallower deposits of the Merfeg Formation. In terms of biostratigraphy, the marlstones and argillaceous limestones of this upper part of the Aleg Formation belong to the *Globotruncanita elevata* Biozone (lower to lower-middle Campanian; Gradstein, Ogg J., Schmitz, & Ogg G.M., 2012, fig. 27.6). Laterally, the ratio of planktonic foraminifers to benthic foraminifers plus ostracodes and debris of inoceramids and echinoderms in this part of the Aleg Formation changes along a SW-NE gradient. Thus, from the Rous el Kébar area, on the SE flank of the anticline, to the SW periclinal closure (Fig. 1B), the ratio changes from 0.7 to 0.3 (Negra et al., 1995). This diminution of the planktonic microfaunal proportion toward the SW and increased relative abundance of varied benthic and neritic fauna and bioclasts suggest shallower conditions of deposition in the SW prior to the deposition of the Merfeg Formation.

The Merfeg Formation starts with a ferruginous crust (marking a discontinuity) and is composed of three massively bedded, heterogeneous members (I, II, III), separated by
recessive, thinly bedded, slightly argillaceous limestones with abundant planktonic foraminifers and coccoliths (see fig. 6 in Negra et al., 1995). The planktonic foraminiferal assemblage of the latter beds belong to the *Globotruncanina ventricosa* Biozone (of Campanian age according to Bismuth, oral communication, in Negra, 1994; but middle Campanian-early Maastrichtian in Gradstein et al., 2012, Appendix 3). These argillaceous bedded limestones thin as they overlap the mound-like lithosomes within the first member and contain intercalations of conglomeratic and lensoid bioclastic bodies. The third rudist member is overlain by bedded, porcellaneous, silicified micritic limestones that are rich in moulds of *Inoceramus* and chert nodules. The overall thickness of the Merfeg Formation increases from 40 m in the SW periclinal closure to 135 m at Bir ech Chgaïga, but thins again to about half that figure around Rous el Kébar (Fig. 1B). The top of the porcellaneous limestones is eroded and unconformably overlain by the Béglia and Segui formations.

The present study concentrated on the first massively bedded member (I) of the Merfeg Formation, which contains the large mound-like lithosomes. Three main facies can be recognized in this member:

2.2.1. Massively bedded micrites

The most widely distributed facies, which forms the lower part of much of the member flanking the areas occupied by blocks and associated conglomerates and the entire thickness of the member in some areas, comprises massively bedded white micrites and locally developed microbioclastic limestones. Scanning electron photomicrographs (Figure 3A) show evidence of neomorphic recrystallisation, including neogenic microspar and interlocking nanofabrics (M’Rabet et al., 1986; Negra & Loreau, 1988; Negra et al., 1995), in
contrast to the overlying argillaceous limestones (Fig. 3B). Dolomitization is locally present, especially in lower parts of the member, and in places is associated with marked ferruginous weathering in large nodules or semi-continuous bands. Body fossils are generally sparse. Pelagic microfossils are lacking, in contrast to the argillaceous micrites overlying the member. However, irregular echinoids (Figure 4A) are relatively common in the basal few metres of the member, forming an effective marker bed for the base of the Merfeg Formation in the study area. Rudists are locally present, though only as scattered individual valves and in random orientations, suggesting that they are entirely allochthonous. Prominent among these is the large recumbent form, *Pseudosabinia* (Figure 4B) and their inferred downslope redistribution is similar to that observed in co-eval slope deposits in the Gargano Peninsula of SE Italy by Borgomano and Philip (1989). Other localized macrofauna include large inoceramids (*I. cf. goldfussi* d’Orbigny; Negra & Philip, 1987; Figure 4C herein), as well as rare regular echinoids (*Salenia* sp., pers. comm., Andrew Smith, Natural History Museum, London, 2001). Localized planar lamination with numerous burrows, including *Ophiomorpha*, can be seen on weathered surfaces within patches of ferruginous concretionary growth in bedded microbioclastic limestones at Rous el Kébar (Figure 4D; see also fig. 5C, D in Negra et al., 1995). The orientation of this lamination, together with the way-up indications of low angle truncations (possible small-scale swaley-like cross-stratification; Figure 4E) and the backfills of burrows that cut through the depositional laminations, are here consistent with the regional dip.

[Fig. 3 and 4 hereabouts] 2.2.2. Rudist- and coral-rich limestones
The largest examples of the latter – the principal objects of study in this paper – are exposed in the Bir ech Chgaïga sector of the SE flank of Jebel el Kébar (Fig. 5), where the SE fold limb is overturned with a subvertical regional dip, though accompanied locally by upright subsidiary synclines, as also clearly shown in a natural section to the west, in Oued Dakhla (Fig. 6A). The largest of the exposed lithosomes (the conjoined Blocks 1-2 in Fig. 5) exceeds 50 m in stratigraphical height and can be followed along strike for nearly 300 m. Its basal contact on the Aleg Formation (Fig. 7A, B) is broadly flat, though with some basal undulations up to 4 m in amplitude. The basal ferruginous crust runs along the contact, which also incorporates small localized lenses of conglomerate.

2.2.3. Conglomerates

The mound-like lithosomes are separated laterally from one another, with sharp contacts, by bouldery conglomerates, which, together with the bedded argillaceous limestones, show onlap onto the bodies (Fig. 7C, D). At the NE end of Rous el Kébar, Member I passes entirely into conglomerate with rounded clasts (Fig. 6B, C). Conglomerates include boulders of varied size (millimetric to plurimetric diameter) and composition (Negra, 1984; Negra et al., 1987; Negra, 2003). Certain blocks are micritic and derive from adjacent “mud-mounds” (Negra, 2003) or from carbonates deposited on paleoslopes. Others are bioclastic and sometimes rich in entire joined rudists and corals. The genesis of all types of blocks imply an early lithification of rudist limestones (Negra, 1986; M’Rabet et al., 1986; Negra et al., 1988; Negra, 2003). The matrix enveloping the varied blocks
which is composed of pelagic micritic limestone rich in planktonic foraminifera, suggest
resedimentation processes in pelagic depositional environments (Negra, 2003).

[Fig. 7 hereabouts]

The rudist/coral lithosomes (facies 2) are largely composed of yellow-weathering, cream-
coloured wackestone and micrite. No obvious bedding is observable within the lithosomes,
though parallel joints with metre-scale spacing are visible in some examples, oriented at a
steep angle with respect to the regional bedding (Fig. 7B).

The most abundant macrofossils within the rudist/coral-bearing lithosomes are rudists and,
secondly, corals (Negra & Philip, 1987). Isolated rudists and corals and their angular
fragments are scattered through most of the lithosomes, but the majority of complete
specimens are concentrated locally in bouquets and clusters (Fig. 8A, B). By far the
commonest rudist species are the two hippuritids, *Hippurites colliciatus* Woodward (Fig. 8A,
B) and *Vaccinites vesiculosus* (Woodward) (Fig. 8C, D); ‘*V. braciensis* Sladić-Trifunović’,
cited by Negra and Philip (1987), is now regarded as a junior synonym of the latter species
(see Laviano & Gallo Maresca, 1992). We have also observed scattered specimens of the
multiple-fold hippuritid *Pironaea corrugata* (Woodward), the radiolitids *Joufia
cappadociensis* (Cox) (Fig. 8E) and ‘Rajka’ sp. (now considered a junior synonym of
Biradiolites), and the large canalicate form *Pseudosabinia* sp. (previously illustrated in Fig.
4B). In addition, Negra and Philip (1987) recorded the presence of the radiolitid
Pseudopolyconites sp. According to the SIS dating of Steuber and Schlüter (2012; see their
fig. 5), *V. vesiculosus* ranges from the topmost Santonian to the lowermost part of the upper
Campanian (within their ‘*Hippuritella lakeirousei Interval Zone*’). Although this range
overlaps at its top with the lower part of the *Globotruncana ventricosa* Biozone, to which the overlying argillaceous limestones belong (see above), it also leaves open the possibility of the rudist/coral-bearing lithosomes considerably pre-dating those overlying autochthonous deposits.

[Fig. 8 hereabouts].

According to Negra et al. (1995, p. 407), rudists and corals are most abundant at the stratigraphical tops of the mounds, but this distributional pattern is not consistent. In the largest lithosome (the conjoined Blocks 1 and 2; Figs. 5, 7A), for example, rudists are mostly concentrated towards its SW end. The same lithology and fossil content is observed in the blocks in the surrounding conglomerate. Some mega-blocks approach the mound-like lithosomes in size (Fig. 6). The conglomerate has a pale micritic matrix and is frequently capped by a distinctly finer-grained microconglomerate. Macrofossils are relatively scarce in the overlying argillaceous limestones, though several specimens of an irregular echinoid (*Vomeraster subverrucosus* (Gauthier), pers. comm., Andrew Smith, Natural History Museum, London, 2001) were encountered in the area of the SW periclinal closure.

3. **Rudist orientations within the rudist/coral-bearing lithosomes**

Given the lack of obvious bedding within the rudist/coral lithosomes, but the abundance of hippuritid rudists, it was decided to plot the orientations of the latter in order to check for any consistent pattern from which original bedding orientation within the lithosomes might be inferred. Before reviewing the results of this survey, it is necessary to summarize current
understanding of the typical life positions and modes of taphonomic re-orientation of these rudists.

3.1. Palaeoecology and taphonomy of hippuritid rudists

Field observations of hippuritid rudists preserved in life position show that they typically grew upwards, either vertically or with a somewhat inclined orientation, thereby raising their suspension-feeding systems from the substrate as obligate ‘elevators’ in the ecological morphotype terminology of Skelton and Gili (2002). In most cases, their tubular right (attached) valves became more or less implanted in the sediment that accumulated around them, yielding sediment-supported, ‘constratal’ growth fabrics (Gili, Masse, & Skelton, 1995a; Skelton, Gili, Vicens, & Obrador, 1995b; Vilardeol & Gili, 2003). The original direction of growth and life-orientation of specimens shown in vertical section can be confirmed from observation of the tabulae in their lower valves (Fig. 9), since the latter, besides being concave towards the commissure, usually grew with an approximately horizontal attitude in the manner of hammocks slung between the inner surfaces of the valve walls (Skelton & Gili, 2002). Consequently, only specimens exhibiting concave-upwards, approximately bed-parallel tabulae should be considered as preserved in life position. Specimens that grew vertically display tabulae with symmetrical curvature (Fig. 9A), while those with inclined growth tended to produce asymmetrically curved tabulae (with the maximum inflection of curvature displaced towards the opposite side from the direction of inclination; Fig. 9B).

[Fig. 9 hereabouts]
The clustering density and preferred orientation of the shells, when in life position, seems to have varied according to species. Dense clusters of vertically oriented small slender shells of *Hippurites colliciatus* Woodward and *Hippuritella vasseuri* (Douvillé) have been described from the Maiella carbonate platform, Italy (Stössel & Bernouilli, 2000) and Gosau, Austria (Götz, 2003), respectively. Large, solitary to locally clustered cylindrical forms such as *Vaccinites* also tended to grow vertically, sometimes partially stabilized by other individuals (Steuber, Yilmaz, & Löser, 1998; Schumann, 2000) or by neighboring corals (Gili et al., 1995b; Skelton et al., 1997). By contrast, slender cylindrical *Hippurites socialis* Douvillé and *Hippurites praecessor* Douvillé, for example, most commonly grew in relatively loose clusters, with a preferred inclined orientation (Grosheny & Philip, 1989; Gili, 1992; Skelton et al., 1995; Vilardell & Gili, 2003; see also Fig. 9B). In experimental flume tank and field studies of water flow patterns around models of hippuritids, Gili and LaBarbera (1998; 2001) found that the cap (equivalent to the left valve) of model shells oriented vertically or inclined upstream was bathed only by water from the mainstream flow. Flow around models inclined downstream, however, showed distinct differences from the other orientations. Hippuritid models inclined downstream generate intense rising vortices in their lee that lift water off the substrate and up onto their caps, which are thus bathed in a mixture of water from both the mainstream flow and the surface of the sediment. A downstream inclined orientation accordingly permitted hippuritids to exploit resources (food particles) unavailable to vertically oriented rudists. The conclusions of these experimental studies are consistent with the preferentially inclined growth of hippuritids – verified by the bed-parallel orientation of their tabulae (e.g., Fig. 9B) – away from the inferred predominant current direction in the southern Central Pyrenees (Gili, 1992; Skelton et al., 1995; Vilardell & Gili, 2003). However, a detailed palaeoecological and taphonomic study of one of the hippuritid lithosomes in this
area (Skelton et al., 1995) showed that most of the shells there had been re-oriented (as again confirmed by inspection of their tabulae) so as to lie densely stacked more or less parallel with the bedding. This taphonomic fabric, termed ‘dense horizontal fabric’ in Skelton et al. (1995), was shown to be due to current-induced removal of sediment and the domino-like toppling of shells during occasional storms. Moreover, the toppling direction of the secondarily oriented shells conformed with the direction of growth of the originally inclined specimens, suggesting a causal relationship: the inclined growth could be interpreted as a response to predominant fair-weather currents sharing the same trends as the storm surges.

Specimens with geniculate growth additionally reveal the ability of hippuritids to re-attain elevation through growth when displaced from their upright position (Skelton & Gili, 2002; Vicens & Gili, 1995; Steuber, 1997). The resumption of upward growth by geniculation can be recognized by the re-orientation of tabulae, which re-established an approximately horizontal orientation, while the shell wall underwent curved upward growth (e.g., Skelton & Gili, 2002, Pl. 1, fig. 2). Geniculation was usually a response to toppling by occasional current-induced displacement. However, some shells show a multigeniculate horn-shape evidently reflecting chronic instability that necessitated repetitive recovery growth (Steuber, 1999).

A variety of preserved attitudes with respect to bedding was thus possible in autochthonous to parautochthonous associations of hippuritids, ranging from upright to inclined life orientation (with or without curvature or geniculation) to more or less bed-parallel in the case of secondarily toppled shells (Figs. 10A and 10B). Nevertheless, bulk data from specimens displaying such a spectrum of preserved orientations can be expected to show a mean pole
oriented approximately normal to bedding, with tight clustering of data for vertically grown
individuals to looser clustering for those with variably inclined growth, together with a scatter
of bed-parallel orientations shown by toppled shells.

[Fig. 10 hereabouts]

3.2. Conventions for plotting orientations of rudists

The orientations of the elongate right (attached) valves of hippuritids within the rudist/coral-
bearing lithosomes were plotted as equal-area stereographic lower hemisphere projections,
using the Stereonet 4.9.5a plotting software of Allmendinger (1995). For each individual, the
present 3-dimensional orientation of the apical to commissure-centre axis of the right valve
was plotted, using different symbols according to whether the commissure was directed
upwards or downwards (Fig. 11), for both *Hippurites colliciatus* and *Vaccinites vesiculosus*.
For curved valves, the orientation of only the latest-formed part (towards the commissure)
was used, as this would indicate the final attitude of those specimens that had been preserved
in life position, and data from such geniculate shells were tagged.

[Fig. 11 hereabouts]

All the plotted orientations were then stereographically rotated to correct for the regional dip
at the site of each lithosome (allowing also for the overturn of the southern fold limb), so as to
reveal the preserved orientations of the rudists prior to folding of the Merfeg strata. Mean
orientations were then identified for consistently clustered rudist data points inferred to represent individuals preserved in life position (as explained in the previous section), to serve as proxies for the poles to the original bedding of their host sediment. Other specimens, with more widely dispersed orientations, can be assumed to represent toppled shells. Finally, original host-sediment bedding orientations inferred from the rudist data were compared with the corrected regional bedding orientation to test for any deviation from concordance.

Rudist orientation data were collected in four sets, for Blocks 1 to 4. Sets 1 and 2 relate to the largest lithosome, at Bir-ech-Chgaïga (Fig. 5), set 1 being derived from its SW termination, which is separated from Block 2 by a gravel-covered path, where the rudists are most abundant. Sets 3 and 4 come from the lithosomes successively along strike to the NE, the latter being exposed in Oued el Khécha (Fig. 5).

3.3. Results and analysis

Figures 12A, C and 13A, C show the stereographic projections of the ‘raw’, unrotated hippuritid orientational data for Blocks 1-4, respectively. The same data are then shown rotated so as to correct for the regional dip of the overturned host strata in Figures 12B, D + E and 13B, D, respectively. Also included for the conjoined Blocks 1 and 2 in Figures 12B and C-E is the mean orientation in each block of prominent parallel joints that are possibly interpretable as bedding (Figure 7B). Finally, Figure 13E shows for Block 4 the effect of a second rotation to orientate vertically the pole to bedding estimated from the rudist orientations, illustrating the clustering of individuals interpreted to have been preserved more
or less in life position around that pole, as well as the scatter of data (grey points) around the
(restored) horizontal plane representing specimens presumed to have been toppled.

[Figures 12 and 13 hereabouts]

Figures 12B, D, E and 13B, D reveal that after correction for the regional tectonic tilt, the
hippuritids – both Vaccinites and Hippurites – predominantly ‘face’ (i.e., have their
commissures directed) towards the South-West (as previously noted for uncorrected
orientational data by Negra, 1987, Fig. 3 therein) in Blocks 1-3, or towards the West in the
case of Block 4. In each case, the mean pole for the corrected autochthonous rudist data
shows a shallow declination towards the NE (or to the East in the case of Block 4), implying
an inferred bedding orientation dipping steeply (up to ~70°) to the SW (or to the West, for
Block 4) according to the argument based on rudist life positions rehearsed earlier.

Significantly, while the orientations of Hippurites specimens show some expected scatter,
relating to the variable inclination of individuals in autochthonously preserved clusters (e.g.,
Fig. 14A), those of Vaccinites specimens show relatively greater consistency, presumably
reflecting typically upright implantation of their large, elongate shells during growth,
similarly to examples in the Santonian of the southern Central Pyrenees investigated by Gili et
al. (1995b) and Skelton, Gili, Rosen, and Valldeperas (1997). Even geniculate specimens of
the latter (e.g., Fig. 14B) re-attained closely similar orientations in the latest-formed parts of
their shells (Fig. 13E). On the other hand, the more scattered data points assumed to represent
toppled shells show, as expected, a tendency to cluster around the girdle for the inferred
bedding (grey points in Fig. 13E). Also worth noting is that the mean rudist poles for Blocks 1 and 2 are close to those for the parallel joints observed within them (Figs. 7B, 12B, E), although that for Block 3, by contrast, is clearly divergent (Fig. 13A, B), suggesting that the joints observed in the latter may indeed be tectonic. Additional corroboration for the inferred bedding orientations in the conjoined Blocks 1 and 2 comes from associated articulated specimens of the large recumbent canaliculate rudist *Pseudosabinia* (Fig. 14C), which would have lain prone on the sediment surface in life.

Finally, mention should be made of some additional measurements of commissural plane orientations made on articulated specimens of *Inoceramus cf., goldfussi* preserved in porous white clotted micrites (Block 5) along strike to the West of Blocks 1/2 (Figs. 4C and 12F). In contrast to the rudist orientational data discussed above, the mean pole for the commissural planes of these large flat clams lies remarkably close to that for the host fold limb, suggesting concordant bedding there.

4. Discussion

The hippuritid orientational data discussed above imply bedding dips within the investigated lithosomes of up to ~70° with respect to the original regional bedding of the basal member (I) of the Merfeg Formation. Moreover, this inferred bedding – further corroborated by the
orientations of associated recumbent *Pseudosabinia* – matches prominent parallel joints within the largest lithosome (conjoined Blocks 1 and 2), which probably thus indeed represent bedding. It is inconceivable that such a steep bedding orientation for the accumulating lime sediments in which elevator rudists became passively implanted could have been primary, contrary to the earlier interpretation of the lithosomes as *in situ* mudmounds colonized by rudists and corals (Negra, 1987; Negra et al., 1995). Hence the lithosomes are re-interpreted here as allochthonous blocks (olistoliths) calved from a nearby platform margin. The similarity of the sense of bedding rotation in the investigated blocks – with internal bedding tilting down to the SW or W with respect to the original horizontal – implies rotational slumping and sliding from a source area in that general direction (Fig. 15). Smaller blocks, by contrast, would have been able to roll, hence their more haphazard orientations in the bouldery conglomerates that surround the blocks. In other words, the former ‘mounds’ can now be regarded as the largest components of a gigantic debris-flow, otherwise already attested by the widespread platform-derived conglomerates (Negra, 2003).

The inferred rotational slumping and sliding of the rudist and coral-bearing blocks from a carbonate platform source area to the SW (or W) is consistent with the palaeogeographical context outlined earlier (Fig. 1A), based on regional facies distributions, analysis of planktonic/benthic foraminiferal ratios in the underlying Aleg Formation and indications of slope instability in the laterally equivalent Merfeg and Abiod formations (Negra et al., 1995), the sedimentology of the conglomerates (Negra, 2003) and the evidence for micrite diagenesis and early lithification within the blocks (Negra, 1984; M’Rabet et al., 1986; Negra & Loreau,
Nevertheless, the presence of a zone between Oued Dakhla and Jebel Fraiou (Fig. 1B) that lacks such mega-blocks allows the possibility that the two areas could have been sourced from different parts of the parent platform. The massively bedded micrites and locally developed microbioclastic limestones with Inoceramus, irregular echinoids and tempestite horizons (Negra & Zagrarni, 2007), by contrast, appear to represent primary accumulations of locally generated or transported sediments on the paleoslope.

5. Conclusions

The approach adopted herein of using plots of rudist orientations to infer internal bedding in the lithosomes has thus proved its worth for (re-)interpreting how the latter originated, so can be recommended for the analysis of comparable slope deposits elsewhere.

The colossal scale and regional extent of the debris flows in the basal Merfeg member (I), in particular, beg the question of how they were triggered. Numerical modeling of the compositionally similar Maiella carbonate platform in Italy by Rusciadelli, Sciarra, and Mangifesta (2003) suggests that emersion alone, despite creating considerable lithostatic stresses, might not have been sufficient to have caused its collapse. The additional involvement of seismic shocks thus seems likely – like the proverbial straw that breaks the camel’s back – and evidence for contemporaneous collapses elsewhere and for some tectonic activity in the region indeed exists (M’Rabet et al., 1986; Negra, 2003; Bey et al., 2012).
As a final speculation, we suppose that collapse on this scale would have generated widespread tsunamis, offering the possibility for testing the scenario that we propose by searching for evidence of coeval tsunami deposits in surrounding regions.

Acknowledgements

The research on which this study is based was funded by NATO Collaborative Linkage Grant (Mediterranean Dialogue countries) EST.CLG.977089 to M.H.N., E.G. and P.W.S., on ‘Genesis of rudist and coral formations in El Kébar, Tunisia’ (2000-2002). In addition, comparative studies of rudist palaeoecology in the southern Central Pyrenees were supported by Spanish DGI Project no. PB 97-0135-C02-02. We are very grateful for the identification of echinoids by Andrew Smith (NHM). Albert Casanelles Gili is thanked for drawing the cartoons of Figs. 10, 11 and 15. Jalel Jaballah is also thanked for the improvement of some figures. For our stereographic projections of the rudist orientations, we used the free-download ‘Stereonet’ software produced by Richard Allmendinger. We address our thanks to two anonymous reviewers who have revised our paper and contributed to improve its content.

References

FIGURE CAPTIONS

Fig. 1. (A) Location map, showing general situation and Campanian palaeogeographical context of strata in the Jebel el Kébar anticline. (B) Geological map of SW periclinal termination of Jebel el Kébar. (C) Diagrammatic section across SE limb of anticline and subsidiary syncline at Bir-ech-Chgaïga (section line X-Y in (B)).

Fig. 2 Summary stratigraphical log of formations exposed at study area in Jebel el Kébar.

Fig. 3 (A) SEM photograph of matrix of Unit 1 rudist limestone, showing anhedral to subhedral micritic grains partly surrounded by a sparitic cement. (B) SEM photograph of bedded argillaceous limestone onlapping the Unit 1 rudist limestones, showing abundant nanofossils, predominantly coccoliths and their debris.

Figure 4. Macrofossils and sedimentary structures in massively bedded white micrites and microbioclastic limestones of Merfeg Formation: (A) Section of irregular echinoid in the basal bed (Oued Dakhla); (B) *Pseudosabinia*, fragment of coiled left valve (J. Fraiou); (C) *Inoceramus* cf. *goldfussi* d’Orbigny (west of Bir-ech-Chgaïga); (D) *Ophiomorpha* (Rous el-
Kébar); (E) Possible swaley-like cross stratification (Rous el-Kébar). Scale bars in A, B, D are 10 mm; length hammer head in C is 150 mm.

Fig. 5. Detailed map showing the geometry of the rudist- and coral-rich limestones of the Merfeg Formation in the Bir-ech-Chgaïga sector of the Jebel el Kébar anticline, southern limb (see Fig 1B for location). Key to stratigraphical units: (a) Aleg marlstones; (b, e, f) rudist limestones I, II and III, respectively; (c) intraformational conglomerates; (d) pelagic argillaceous limestones; (g) bedded micritic limestones; (h) Mio-Pliocene silts and clays. Numbers in white circles refer to Blocks 1, 2, 3 and 5 discussed in text. Red arrows indicate directions towards Oued Dakhla (to the SW) and Oued el Khécha, including Block 4 (to the NE). X-Y shows section line for Fig. 1C.

Fig. 6. (A) Natural section along eastern wall of Oued Dakhla (see Fig. 1B for location), showing overturned southern limb of anticline at right (south), with allochthonous megablock in lower part of Merfeg Formation (arrowed) and Aleg Formation in its core, as well as roof syncline to the north. (B) Field photo showing conglomerates containing varied-sized pebbles. Rous el Kébar area. (C) Detailed view showing a rudist-rich “block” enveloped by a micritic matrix.

Fig. 7. (A, B) Block 2 of the largest mound-like rudist- and coral-rich lithosome at Bir-ech-Chgaïga, viewed from the north (i.e., from stratigraphically beneath it), with vertical joints interpreted here as bedding indicated in (B) together with person in white circle for scale. (C, D) Onlap of flanking beds on rudist- and coral-rich lithosome (Block 3) at Bir-ech-Chgaïga, with bedding relationships indicated in (D). See Fig. 5 for locations.
Fig. 8 Rudists in the Merfeg Formation, Jebel el Kébar: (A) cluster of slender hippuritids (*Hippurites colliciatus* Woodward) in isolated block (Rous-el-Kébar); (B) cluster of *H. colliciatus* right (attached) valves viewed in transverse section (Rous-el-Kébar); (C) pair of *Vaccinites vesiculosus* (Woodward) in longitudinal section (Oued el Khécha, Block 4); (D) *V. vesiculosus*, articulated shell (Jebel Fraiou); (E) *Joufia cappadociensis* (Cox) (Bir-ech-Chgaïga, Block 2). See Fig. 1B for localities. Length of hammer head in A and C is 150 mm; Scale bars in B, D and E is 10 mm.

Fig. 9 (A) Hippuritid specimens showing symmetrical concavity of tabulae towards the commissure, including base of body chamber, here filled by white micrite (*H. colliciatus*, Rous-el-Kébar); (B) Oblique, bed-parallel tabulae in *H. socialis* specimens preserved in inclined life position (Vilanoveta, southern Central Pyrenees; see Skelton et al., 1995). Scale bars are 10 mm.

Fig. 10 Summary cartoons showing typical hippuritid orientations with respect to bedding and currents, including accidentally toppled shells and specimens with geniculate recovery growth. (A) Rudist shells implanted in the sediment forming upright growth fabrics. (B) Slender cylindrical shells with a downstream inclined orientation

Fig. 11 Diagram explaining conventions for stereographic plotting of rudist orientations: (A) projection of rudist orientation poles onto equatorial plane; (B) resulting stereographic projection (but note that equal area plots are used in this work, so the explanatory cartoon in (A) is slightly simplified for ease of understanding).
Fig. 12 Stereographic projections of orientation data for Blocks 1, 2 and 5: (A) Block 1, uncorrected hippuritid orientations; (B) Block 1 data rotated to correct for regional dip, with pole and plane of parallel joints (bedding?) added; (C) Block 2, uncorrected hippuritid orientations together with mean pole for joints (apparent bedding) within block; (D) Block 2 data rotated to correct for regional dip; (E) Block 2 data as in (D), with points for hippuritids preserved in life position shown in grey, together with their mean vector and implied bedding plane, with that inferred from joints for comparison, and points for rudists interpreted as toppled shown coloured; (F) Block 5 poles to commissural planes of *Inoceramus* specimens, rotated to correct for regional dip.

Fig. 13 Stereographic projections of orientation data: (A) Block 3, uncorrected rudist orientations; (B) Block 3 data rotated to correct for regional dip; (C) Block 4, uncorrected rudist orientations; (D, E) Block 4 data rotated first to correct for regional dip (D), then again to set pole for block bedding (estimated from fallen rudists) to vertical (E).

Fig. 14 (A) Cluster of *Hippurites colliciatus* photographed *in situ* in Block 1, showing fanned orientations around a general commissural ‘facing’ direction towards the SW (to the right); (B) Geniculate example of *Vaccinites vesiculosus* in Block 4; (C) articulated specimen of *Pseudosabinia* preserved on apparent bedding surface within Block 1. Length of hammer shaft in A and B is 350 mm; Scale bar in C (bottom left) is 10 mm.

Fig. 15 Model for emplacement of blocks of rudist-rich limestone as olistoliths derived from platform, illustrating expected sense of rotation of elevator rudists.
A CCEPTED MANUSCRIPT

A

Equal Area Projection

Geniculate rudist

B

Mean measured bedding plane in block

Rotation Axis: (0/060)

Bedding plane estimated from mean rudist orientation

C

Equal Area Projection

D

Rotation Axis: (0/046)

Rotated 'apparent' bedding pole

E

Mean measured bedding plane in block

Rotation Axis: (0/046)

Bedding plane estimated from mean rudist orientation

F

Equal Area Projection

Legend:

- Vaccinites (up)
- Hippurites (up)
- Vaccinites (down)
- Hippurites (down)
- Pole to apparent bedding measured in block
- Pole to regional bedding
- Inoceramus (pole to commissure)
- Mean vector of poles to commissures (with 95% confidence contour)
- Data used to calculate mean rudist orientation vector
- Data points omitted from calculation all lie close to bedding plane in block (fallen rudists?)
- Mean vector of poles for hippuritids preserved in life position
A

Equal Area Projection

B

Equal Area Projection

C

Equal Area Projection

D

Equal Area Projection

E

Equal Area Projection

- Vaccinites (up)
- Vaccinites (down)
- Suspected fallen rudists-data not used in final mean vector calculation
- Bedding (plane + pole) estimated from fallen rudists
- Mean vector of radial Orientations (minus fallen) (with 95% confidence contour)
- Pole to regional bedding
- (Geniculate)
- (Geniculate)
- Pole to joints in block
- Hippurites (up)
Highlights

As classically known, the Late Cretaceous is a period of obvious tectonic instabilities at least around the Mediterranean Tethyan region. Tectonic plate movements in combination with sea-level changes which gave rise to instabilities have led to various forms of mass transport on platform and ramp margins and slopes. In many situations, the recognition of bedding dislocation and rotation is difficult; our study introduces the methodology of rudists orientation measurement as a tool to discriminate between in situ and olistholitic deposits.

The example of Jebel el Kebar that constituted for us a nice demonstrative example with high-quality and continuous outcrops which help a lot to study the vertical stacking of the rudist-rich carbonates and also to follow the frequent and rapid lateral facies changes.

Our approach was based on the study of the orientations of the elongate right (attached) valves of hippuritids within the rudist/coral-bearing lithosomes. These orientations were plotted as equal-area stereographic lower hemisphere projections, using the Stereonet 4.9.5a plotting software of Allmendinger (1995).

We tried to establish a model which reconstitutes the different episodes of sedimentation since the installation of rudists on the sea floor until the last feature of the rudist-rich layer observed today on the field.

This approach which provided significant results in the studied area, could be used as a tool guide to solve certain problems in geological series, linked to resedimentation processes, layers polarity, etc. In fact, our paper emphasizes the relevance of our method to the analysis of comparable slope deposits elsewhere, so to broaden its interest.