Orientably regular maps with given exponent group

Journal Item

How to cite:

For guidance on citations see FAQs.

© 2016 London Mathematical Society

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1112/blms/bdw059

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Orientably regular maps with given exponent group

Marston D. E. Conder and Jozef Širáň

Abstract

We prove that for every integer $d \geq 3$ and every group U of units mod d, there exists an orientably regular map of valency d with exponent group U.

1. Introduction

An orientably regular map M is a 2-cell embedding of a connected graph in an orientable surface, such that the group of all orientation-preserving automorphisms $\text{Aut}^+ M$ of the embedding acts as regularly (sharply transitivity) on the set of arcs of the graph. It follows that every vertex of M has the same valency, say d, and every face of M is bounded by a closed walk of the same length, say m.

If e is an arc at any vertex v of M, then regularity implies that $\text{Aut}^+ M$ contains an involution x acting like a 180-degree rotation of M about the centre of e, and an element y of order d acting like a d-fold rotation of M about v. Then by connectivity, the group $\text{Aut}^+ M$ is generated by x and y, and admits a presentation of the form $\text{Aut}^+ M = \langle x, y \mid x^2 = y^d = (xy)^m = \cdots = 1 \rangle$. The pair (d, m) is called the type of the map. Conversely, given any generating pair (x, y) for a group G with the above form, one may construct an orientably regular map M with $\text{Aut}^+ M = G$ by taking edges, vertices and faces of M as the (right) cosets in G of the subgroups $\langle x \rangle$, $\langle y \rangle$ and $\langle xy \rangle$, respectively, and with incidence given by non-empty intersection of cosets. (Also the arcs may be taken as the elements of G.) Thus, orientably regular maps of valency d and face length m may be identified with 2-generator group presentations of the form $\langle x, y \mid x^2 = y^d = (xy)^m = \cdots = 1 \rangle$.

Fundamentals of the theory of maps and orientably regular maps are explained in [8], some deep connections between such maps, Riemann surfaces and Galois groups are described in detail in [9], and a recent survey containing a large number of facts about regular maps is given in [11].

Next, let M and $G = \text{Aut}^+ M = \langle x, y \rangle$ be as above. An integer j relatively prime to d is said to be an exponent of M if the assignment $(x, y) \mapsto (x, y^j)$ extends to an automorphism of G. Algebraically, this means that (x, y) and (x, y^j) satisfy the relations as each other, while from the point of view of maps, it means that if a new map M^j is constructed from M by replacing the clockwise local cyclic order π_v of arcs at each vertex v by π_v^j, then resulting map M^j is isomorphic to M. Orientably regular maps admitting the exponent -1 are isomorphic to their mirror image, and are therefore called reflexible.

The collection of all exponents of M forms a subgroup of the group of units \mathbb{Z}_d^*, and is called the exponent group of M. The notion of an exponent was introduced in [10], with applications in the classification of orientably regular maps with a given underlying graph. Previously, the
mapping $M \to M^3$ (even in the case when the two maps may not be isomorphic) was known
as a hole operator, and studied by Wilson [14], but this mapping has also been attributed to
Coxeter.

For the exponents of an orientably regular map of given valency d, there are two ‘extremes’: one
where the exponent group is trivial, or consists only of 1 and -1, and the other where the
map admits the ‘full’ exponent group \mathbb{Z}_2^d.

In [2], it was shown that for every $d \geq 3$ there are infinitely many finite orientably regular
maps of valency d with trivial exponent group. This was done with the help of a method that
allows one to forbid the creation of new automorphisms in lifted maps, but unfortunately the
method offers no control over the face length. Also it was proved in [12] using residual finiteness
of triangle groups that for every pair of positive integers d and m with $1/d + 1/m \leq 1/2$, there
exist infinitely many finite orientably regular and reflexible maps of type (d, m) that admit no
exponents other than 1 and -1.

At the other end of the spectrum, it was shown in [13] that for every integer $d \geq 3$ there exist
infinitely many finite orientably regular maps with exponent group \mathbb{Z}_d^2. Again this was achieved
use of residual finiteness of triangle groups, but this time losing control over the face length of
resulting maps. Such maps were called ‘kaleidoscopic’ in [1], where a covering construction was
given for a kaleidoscopic d-valent regular map invariant also under duality and Petrie duality,
for every even d. A different construction for such ‘super-symmetric’ d-valent maps was given
for an infinite set of odd values of d in [6].

In this paper, we deal with the ‘intermediate’ cases, by considering arbitrary subgroups of the
group of units modulo the valency d. We prove that for every $d \geq 3$ and every given subgroup U
of \mathbb{Z}_d^*, there exist infinitely many finite orientably regular maps of valency d with exponent
group equal to (and not just isomorphic to) U.

2. The main result

THEOREM 1. For every $d \geq 3$ and every subgroup U of \mathbb{Z}_d^*, there are infinitely many finite
orientably regular maps of degree d with exponent group equal to U.

Proof. Let G be the free product $\mathbb{Z}_2 \ast \mathbb{Z}_d$ of the cyclic groups of order 2 and $d \geq 3$, with
presentation $\langle X, Y \mid X^2 = Y^d = 1 \rangle$, and let $D = G'$ be the derived subgroup of G, of index $2d$
in G, with quotient $G/D \cong \mathbb{Z}_2 \times \mathbb{Z}_d$. By Reidemeister–Schreier theory [5], the group D is free
of rank $d - 1$, generated by the commutators $W_j = [X, Y]$, for $j \in \{1, 2, \ldots, d - 1\}$.

We will construct for any given subgroup U of \mathbb{Z}_d^* an infinite family of quotients of G that
give rise to orientably regular maps of degree d with exponent group U.

For any prime p, let $N_p = D'D^p$ be the subgroup of D generated by the commutators and
pth powers of all elements of D. This subgroup is characteristic in D and hence normal in G, and
the quotient D/N_p is isomorphic to the direct product \mathbb{Z}_p^{d-1} of $d - 1$ copies of \mathbb{Z}_p. Also
G/N_p is an extension of $D/N_p \cong \mathbb{Z}_p^{d-1}$ by $(G/N_p)/(D/N_p) \cong G/D \cong \mathbb{Z}_2 \times \mathbb{Z}_d$, and hence G/N_p
has order $2dp^{d-1}$.

Next, for any $u \in \mathbb{Z}_d^*$, let k_u be the automorphism of G that takes the generating pair
(X, Y) to the generating pair (X, Y^u). Note that this permutes the generators $W_j = [X, Y]$
of D among themselves, and therefore preserves D, and its characteristic subgroup N_p, and so
induces an automorphism h_u of $G_p = G/N_p$, with $(N_p)h_u = N(g^{k_u})$ for all $g \in G$.

Now, let U be any subgroup of \mathbb{Z}_d^*. Then, $K_U = \{k_u : u \in U\}$ and $H_U = \{h_u : u \in U\}$ are
groups of automorphisms of G and G_p (respectively), both isomorphic to U.

We will show that if the prime p is congruent to 1 mod d, then there exists a normal subgroup
L_U of $G_p = G/N_p$ contained in D/N_p such that L_U is preserved by H_U, and furthermore,
that L_U can be chosen so that it is not preserved by h_r for any $r \in \mathbb{Z}_d^* \setminus U$. Under these
circumstances, the quotient G_p/L_U determines a finite orientably regular map M of valency d
with exponent group containing U, and then finally, we will show that the exponent group of
M is equal to U. We break this up into three steps below.

Step 1. Let x and y be the images of X and Y under the natural quotient homomorphism
from G to $G/N_p=G_p$, and let $w_j=[x,y^j]=xy^{-j}xy^j$, which is the image of $W_j=[X,Y^j]$,
for $j \in \{1,2,\ldots,d-1\}$. Then, these w_j are elements of the elementary abelian p-group $V_p=
D/N_p \cong \mathbb{Z}_p^{d-1}$, and so commute with each other. Moreover, it is easy to see that $xw_jx=
y^{-j}xw_jx=y^{-j}xw_{j+1}=y^{-j}x^{(j+1)}x^{-1}y^{j+1}=w_j^{-1}w_{j+1}$, for all $j \in \{1,2,\ldots,d-1\}$, if we define also $w_0=[x,y^d]=1$.

Next, suppose $p \equiv 1 \pmod{d}$, and let t be any non-trivial dth root of 1 mod p, so that
$1+t+t^2+\cdots+t^{d-1} \equiv 0 \pmod{p}$. Define
\[v_t = w_1^t w_2^t \cdots w_{d-2}^t w_{d-1}^t, \]
which is an element of the abelian p-group $V_p=D/N$. Conjugation by x inverts v_t, while
\[y^{-1}vty = (y^{-1}w_1y)^t(y^{-1}w_2y)^{t^2} \cdots (y^{-1}w_{d-2}y)^{t^{d-2}}(y^{-1}w_{d-1}y)^{t^{d-1}}, \]
\[= (w_1^{-1}w_2^t)^t (w_1^{-1}w_3^t)^{t^2} \cdots (w_1^{-1}w_{d-1}^t)^{t^{d-2}}(w_1^{-1}w_d^t)^{t^{d-1}}, \]
\[= w_1^{t+2t+\cdots+t^{d-2}+t^{d-1}} w_2^{t^2} \cdots w_{d-2}^{t^{d-2}} w_d^{t^{d-1}} \]
\[= w_1 w_2^t w_3^t \cdots w_{d-2}^{t^{d-2}} w_d^{t^{d-1}} \]
\[= (v_t)^{-1}. \]

It follows that the cyclic subgroup L_t of $V_p=D/N_p$ generated by v_t is normal in G_p.

Now, take $L_U=(L_h^u: u \in U)$. Since L_t is a normal subgroup of G_p, the image L_h^u of L_t
under each automorphism h_u is also a normal subgroup of G_p, and hence L_U is normal in G_p.
Moreover, L_U is clearly preserved by $\phi(d) \cdot (d-1)$-tuple $w_1 \cdot w_2 \cdot \cdots \cdot w_{d-1}$
when $d-1$-tuple (a_1,a_2,\ldots,a_{d-1}), then by its definition above, $v_t^{(j)}$ can be written as the $(d-1)$-tuple $(t^j,t^{j^2},\ldots,t^{(d-1)^j})$. Hence, the set $\{v_t^{(j)}: j \in \mathbb{Z}_d^*\}$ can be represented by a $\phi(d) \times (d-1)$ sub-matrix of the Vandermonde
\[
\begin{pmatrix}
t & t^2 & t^3 & \cdots & t^{d-1} \\
t^2 & t^3 & t^5 & \cdots & t^{2(d-1)} \\
t^3 & t^5 & t^9 & \cdots & t^{3(d-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
t^{d-1} & t^{2(d-1)} & t^{3(d-1)} & \cdots & t^{(d-1)(d-1)} \\
\end{pmatrix}
\]

This matrix has determinant $\prod_{1 \leq i < j \leq d-1} (t^j - t^i)$, which is non-zero in \mathbb{Z}_p since t is a primitive
dth root of 1 mod p, and it follows that for any subset S of \mathbb{Z}_d^*, the rows with first entry t^j with
$j \in S$ are linearly independent over \mathbb{Z}_p. In particular, taking $S = \mathbb{Z}_d^*$, we see the above claim is
true.
But also this shows that \(h_r(L_U) \neq L_U \) for any \(r \in \mathbb{Z}_d \setminus \mathbb{U} \), because if \(h_r(L_U) = L_U \), then \(L_U = h_{-1}(L_U) \) and so the vector corresponding to \(v^{(r)}_l = h_{-1}(v_l) \) is a linear combination of the vectors corresponding to the elements \(v^{(u)}_l \) for \(u \in \mathbb{U} \), which is impossible.

Step 3. It remains to show that the exponent group of the orientable-regular map \(M \) arising from the quotient \(G_p/L_U \) of \(G \) is equal to \(U \). By Step 1, we know that this exponent group contains \(U \). To prove the reverse inclusion, suppose that \(j \) is any exponent of this map \(M \). Then also \(j^{-1} \) is an exponent of \(M \), and hence there exists an automorphism \(\theta \) of \(G_p/L_U \) that fixes the element \(xL_U \) and takes \(yL_U \) to \(y^{-1}L_U \). But now \(v_l \in L_U \subseteq L \), so the coset \(v_lL_U \) is trivial in \(G_p/L_U \), and it follows that the coset containing \(v^{(j)}_l = h_{j^{-1}}(v_l) \) is trivial as well. Thus \(v^{(j)}_l \) lies in \(L_U \), and by Step 2, we deduce that \(j \in U \).

This completes the proof.

3. Concluding remarks

The method we have used does not enable control over the face length of the resulting maps. This is no accident, as it is not true that there exist orientably regular maps of given type \((d, m)\) with \(1/d + 1/m \leq \frac{1}{2}\) and having a given exponent group. For example, in the case of triangulations (with \(m = 3 \)), it was shown in [13] that an orientably regular map of type \((d, 3)\) with valency \(d \equiv \pm 1 \mod 6\) cannot have more than \(\phi(d)/2\) exponents, and that if \(d\) is a prime such that \(d \equiv -1 \mod 8\) and \((d - 1)/2\) is also prime, then such a triangulation cannot have exponents other than \(\pm 1\).

Finally, for completeness, we mention some interesting connections with the case where the exponent group \(U\) does not contain \(-1\). Orientably regular maps with this property are known as chiral. In [4], it was shown by a direct permutation construction that for every pair \((d, m)\) such that \(1/d + 1/m \leq \frac{1}{2}\), there exist infinitely many finite orientably regular but chiral maps of type \((d, m)\). The same thing was proved in [7] by a different method, with the help of holomorphic differentials.

References

13. J. Širáň and Y. Wang, ‘Maps with highest level of symmetry that are even more symmetric than other such maps: regular maps with largest exponent groups’, Contemp. Math. 531 (2010) 95–102.