Copy the page URI to the clipboard
Thomas, Rebecca J.; Hynek, Brian M.; Rothery, David A. and Conway, Susan J.
(2016).
DOI: https://doi.org/10.1016/j.icarus.2016.05.036
Abstract
Unusually low reflectance material, within which depressions known as hollows appear to be actively forming by sublimation, is a major component of Mercury's surface geology. The observation that this material is exhumed from depth by large impacts has the intriguing implication that the planet's lower crust or upper mantle contains a significant volatile-rich, low-reflectance layer, the composition of which will be key for developing our understanding of Mercury's geochemical evolution and bulk composition. Hollows provide a means by which the composition of both the volatile and non-volatile components of the low-reflectance material (LRM) can be constrained, as they result from the loss of the volatile component, and any remaining lag can be expected to be formed of the non-volatile component. However, previous work has approached this by investigating the spectral character of hollows as a whole, including that of bright deposits surrounding the hollows, a unit of uncertain character. Here we use high-resolution multispectral images, obtained as the MESSENGER spacecraft approached Mercury at lower altitudes in the latter part of its mission, to investigate reflectance spectra of inactive hollow floors where sublimation appears to have ceased, and compare this to those of the bright surrounding products and the parent material. This analysis reveals that the final lag after hollow-formation has a flatter spectral slope than that of any other unit on the planet and reflectance approaching that of more space-weathered parent material. This indicates firstly that the volatile material lost has a steeper spectral slope and higher reflectance than the parent material, consistent with (Ca,Mg) sulfides, and secondly, that the low-reflectance component of LRM is non-volatile and may be graphite.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 48593
- Item Type
- Journal Item
- ISSN
- 0019-1035
- Project Funding Details
-
Funded Project Name Project ID Funding Body Bridging funds for MIXS lead Co-Investigator ST/N00339X/1 STFC (Science & Technology Facilities Council) - Keywords
- Mercury; spectroscopy; geological processes; terrestrial planets
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2016 Elsevier Inc
- Depositing User
- David Rothery