The Open UniversitySkip to content
 

Stellar masses of SDSS-III/BOSS galaxies at z ~ 0.5 and constraints to galaxy formation models

Maraston, Claudia; Pforr, Janine; Henriques, Bruno M.; Thomas, Daniel; Wake, David; Brownstein, Joel R.; Capozzi, Diego; Tinker, Jeremy; Bundy, Kevin; Skibba, Ramin A.; Beifiori, Alessandra; Nichol, Robert C.; Edmondson, Edd; Schneider, Donald P.; Chen, Yanmei; Masters, Karen L.; Steele, Oliver; Bolton, Adam S.; York, Donald G.; Weaver, Benjamin A.; Higgs, Tim; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Snedden, Stephanie; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina and Simmons, Audrey (2013). Stellar masses of SDSS-III/BOSS galaxies at z ~ 0.5 and constraints to galaxy formation models. Monthly Notices of the Royal Astronomical Society, 435(4) pp. 2764–2792.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1093/mnras/stt1424
Google Scholar: Look up in Google Scholar

Abstract

We calculate stellar masses for ∼400 000 massive luminous galaxies at redshift ∼0.2–0.7 using the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS). Stellar masses are obtained by fitting model spectral energy distributions to u, g, r, i, z magnitudes, and simulations with mock galaxies are used to understand how well the templates recover the stellar mass. Accurate BOSS spectroscopic redshifts are used to constrain the fits. We find that the distribution of stellar masses in BOSS is narrow (Δlog M ∼ 0.5 dex) and peaks at about log M/M ∼ 11.3 (for a Kroupa initial stellar mass function), and that the mass sampling is uniform over the redshift range 0.2–0.6, in agreement with the intended BOSS target selection. The galaxy masses probed by BOSS extend over ∼1012 M, providing unprecedented measurements of the high-mass end of the galaxy mass function. We find that the galaxy number density above ∼2.5 × 1011 M agrees with previous determinations. We perform a comparison with semi-analytic galaxy formation models tailored to the BOSS target selection and volume, in order to contain incompleteness. The abundance of massive galaxies in the models compare fairly well with the BOSS data, but the models lack galaxies at the massive end. Moreover, no evolution with redshift is detected from ∼0.6 to 0.4 in the data, whereas the abundance of massive galaxies in the models increases to redshift zero. Additionally, BOSS data display colour–magnitude (mass) relations similar to those found in the local Universe, where the most massive galaxies are the reddest. On the other hand, the model colours do not display a dependence on stellar mass, span a narrower range and are typically bluer than the observations. We argue that the lack of a colour–mass relation for massive galaxies in the models is mostly due to metallicity, which is too low in the models.

Item Type: Journal Item
Copyright Holders: 2013 The Authors
ISSN: 1365-2966
Keywords: galactic evolution; galactic formation; galaxies; stellar content
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 48554
Depositing User: David Wake
Date Deposited: 13 Mar 2017 09:31
Last Modified: 09 Dec 2018 08:18
URI: http://oro.open.ac.uk/id/eprint/48554
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU