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Introduction: Stannern-trend eucrites are problematic in simple petrogenetic models for HEDs, as they cannot 

be explained as either products of fractional crystallization in a magma ocean, or as partial melts of a chondritic pre-
cursor [1]. Currently, the most widely accepted petrogenetic model asserts that they may represent the products 
formed when Main-Group-Nuevo-Laredo-trend eucritic magmas were contaminated by melts released during fusion 
of eucritic crust [1]. Melting experiments were conducted with eucrites at near-solidus temperatures in order to de-
termine carrier phases and transport mechanisms for incompatible elements [2]. These experiments at near-solidus 
temperatures did not yield enough melt product in some samples for analysis [2]. However, we expand upon previ-
ous experimental conditions (i.e. increasing temperature) to yield a greater percentage partial melt, which can be 
analyzed and used to test the currently accepted model of Stannern-trend eucrite petrogenesis. Specifically, a com-
position enriched in incompatible elements (i.e. Ti and LREEs), but otherwise similar in bulk composition to main-
group eucrites, should be possible to reproduce from the assimilation of a partial melt product with a main-group 
eucritic composition. To most accurately replicate vestan petrologic processes, the starting material would need to 
meet a set of petrologic and geochemical criteria in order to reflect the petrogenetic processes involved in the for-
mation of Stannern-trend eucrites. 

Starting Material: The starting material for experimentation must be an unbrecciated, unequilibrated main-
group eucrite that is preferably fine-grained and rich in mesostases. In June 2015, the Monnig Meteorite Collection 
at TCU acquired the main mass (510 g) of NWA 8562, an unbrecciated, unequilibrated main-group eucrite [3,4]. 
The Δ17O value of the sample plots close to and within error of the HED fractionation line of [5] and indicates that 
NWA 8562 is an isotopically normal member of the HED suite [4]. 

Petrographic characterization. Two thin sections of the meteorite were examined to characterize the suitability 
of NWA 8562 for petrologic experimentation. NWA 8562 is composed of approximately 60% pyroxene and 35% 
plagioclase, with accessory silica, ilmenite, and troilite [3]. Most plagioclase range from <10µm to ~80 µm. Pyrox-
enes retain igneous zonation and range from pigeonite to ferro-augite [3]. The size of pyroxenes range from <10µm 
to ~100 µm. The presence of metastable ferro-augite and Fe-rich mineral endmembers places NWA 8562 within the 
Type 1 eucrite classification [6]. Some shock mosaicism is present in pyroxene.  

Experimental & Analytical Methods: Following experimental techniques established in [2], we prepared four 
samples (~0.3-0.4 g each) of NWA 8562, and placed each sample in an alumina crucible inside a 1 atm gas mixing 
furnace. The four experiments were run at 1050, 1100, 1150, and 1200°C for 24 hours at log f O2 = IW-0.5. At the 
end of the run time, the samples were drop-quenched in water. Major element geochemistry has been gathered via 
electron microprobe for both starting material and experimental products. Trace elements have been measured for 
bulk composition via ICP-MS, and their distribution in both unheated and heated samples was measured using LA-
ICP-MS. 

Preliminary Results: Experiments yielded approximate melt fractions of <5, 20, 50, and >95%, respectively. 
Melting occurs most extensively in mesostatsis-rich regions between plagioclase and pyroxene. Fe-rich pyroxenes 
are also major contributors in low-percent melts. Major element geochemical analysis of the low melt-fraction prod-
ucts (<5%) shows a strong enrichment in TiO2, P2O5, K2O, and SO3, relative to bulk composition, and depletion in 
Cr2O3, Al2O3, MgO, and NiO.  

Discussion: Simple mixing equations, such as those used in [1], applied to TiO2 and Mg# can yield products 
within the Stannern-trend compositional range. TiO2 is sourced from ilmenite, chromite, and ülvospinels. P2O5 is 
largely derived from mesostasis, possibly metasomatic, fayalite in these experiments. Contribution of phases intro-
duced through metasomatic processes will be considered with regard to [1]. We will also quantitatively assess the 
application of this data and trace element concentrations within the constraits of [1] in order to ascertain its validity. 
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