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Introduction: We previously reported the occur-

rence of fragments of opal (SiO2.nH2O) in several in-

ternal chips of an Antarctic brecciated polymict ureilite 

Elephant Moraine (EET) 83309 [1,2]. Here we present 

the results of a NanoSIMS oxygen isotope study of 

these opals with the aim of understanding their origin. 

The opals occur mainly as clasts up to 300µm in long-

est dimension and often show banding (Figure 1). The 

bands are often terminated at adjacent clasts, suggest-

ing that the opal was not formed in situ but pre-dates 

the brecciation.  

 

 
Figure 1. Top left: back-scatter electron image of a 

banded opal clast in EET 83309,50. Top right: Si X-

Ray map of same clast.  Bottom left: Mg X-Ray map. 

Bottom right: Fe X-Ray map. Scale bar = 50 µm. 

False color images: reds/pinks represent high ele-

mental concentrations; blues/greens represent low 

concentrations. 

 

Opal also occurs as thin rims around the ureilitic 

mineral suessite (Fe3Si) (Figure 2), and often contains 

inclusions of schreibersite ((Fe,Ni3)P). It shows no rela-

tionship whatsoever with terrestrial weathering veins or 

rims (Figure 3), although one piece of opal has been 

found in contact with ureilitic olivine, surrounded by a 

terrestrial weathering rim.  

Opal is extremely rare in meteorites. Although one 

occurrence of opal is reported as a cavity infill in the 

highly weathered Wolf Creek iron meteorite [3], it has 

not been reported as a weathering product in any other 

meteorite. However, opal-A has recently been identi-

fied in the ~1300 Ma old Martian meteorite Nakhla [4] 

where it was interpreted as being a product of  extrater-

restrial aqueous alteration. 

 

 
Figure 2. Back-scatter electron image of opal sur-

rounding suessite in polymict ureilite EET 83309,49. 

Suessite is bright mineral in center of field of view; 

opal is thin (10µm) dark rim (arrowed). Other miner-

als include ureilitic olivine and pyroxene. Circular 

structures are laser pits. Scale bar = 10 µm. 

 
Figure 3. Back-scatter electron image of EET  

83309,52 with an elongated clast of opal (dark object 

at center of field of view, arrowed), with embedded 

schreibersite. The opal is unrelated to terrestrial 

weathering rims (brighter linear features, e.g. crossing 

from bottom to top of image to the right of the opal 

clast). Major minerals include ureilitic olivine and less 

abundant pyroxene. Scale bar = 100 µm.  
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Opal variety and composition: XRD analysis (K. 

Howard pers. comm.) suggests that the opal is of the 

amorphous variety opal-A, although it appears to be 

undergoing some degree of recrystallization (Figure 1). 

The largest opal clast has a composition of approxi-

mately 65.5 wt% SiO2, 6 wt% FeO and <1 wt% MgO, 

but compositions vary from 60 to 76 wt% SiO2. Ana-

lytical totals are always low (67-82 wt%), indicating a 

substantial quantity of water in the opal.  

 

Oxygen isotopes:  In order to determine the oxy-

gen isotope composition of the opal in the ureilite us-

ing the Cameca NanoSIMS 50L at the Open Universi-

ty, an opal standard was required. A biogenic silica 

standard [5] was not considered appropriate. Therefore 

a piece of unbanded opal hosted in a volcanic rock 

from the Faeroe Islands (BM 1907,568) was acquired 

from the Natural History Museum mineral collection 

and four ~2mg chips were analysed using a laser-

assisted fluorination technique, also at the Open Uni-

versity. They yielded the following average values: 

δ
18

O = 30.06 ± 0.36‰ (2)  and δ
17

O = 15.68  ± 

0.20‰ (2).  

NanoSIMS measurements were conducted using 

the methods described by [6].  Repeated analyses of the 

opal standard showed excellent reproducibility with 


18

O values ± 1.0 ‰ (2) and 
17

O ± 1.5‰. Two sepa-

rate opal clasts were analysed. The results for the opal 

clasts from the polymict ureilite are within error of the 

Terrestrial Fractionation Line (Figure 4) and spread 

along a line from a point close to the ureilite field to-

wards lower δ
18

O values. 

 
Figure 4. Oxygen isotope results for opal clasts 

from polymict ureilite EET83309,50 (orange and blue 

symbols), together with data for terrestrial opal stand-

ard (green and purple symbols) and ureilite bulk rock 

data (yellow symbols) from [7]. Black line = Terres-

trial Fractionation Line. 

 

Discussion: Our petrographic observations (Fig-

ures 1-3) strongly suggest that the ureilitic opal was 

formed prior to the final brecciation event on the 

ureilite parent body and prior to terrestrial weathering, 

and therefore has an extraterrestrial origin. However 

the oxygen isotope composition of the ureilite opal 

analysed in this study all plot within error of  the Ter-

restrial Fractionation line with a mean 
17

O value of 

0.6±0.8 (2 SE)‰. 

Opal is known to exchange water readily with the 

environment. Terrestrial opal has variable, but general-

ly 
18

O-rich oxygen (~19 to 38‰) whereas the ureilitic 

opal 
18

O values are more 
18

O-poor. Antarctic water 

can have 
18

O ca. -40 to -50‰, so it is possible that the 

trend observed in the ureilite opal may reflect interac-

tion with terrestrial water. There is a high abundance of 

water in the analysed opal (18-33 wt%), readily facili-

tating isotopic exchange with the Antarctic environ-

ment, even at low temperatures. The equilibrium frac-

tionation factor between water and opal is ≈40‰ at 

temperatures applicable to Antarctica [8,9] and there-

fore the measured values are consistent with a terrestri-

al origin for the O-isotope signature. The variation in 


18

O observed in the urelitic opal may be the result of 

partial isotopic exchange between the opal (which ini-

tially had a ureilitic oxygen isotope composition) and 

Antarctic water.  Alternatively, the isotopic composi-

tion of the Antarctic water may have evolved during 

interaction with the opal and reaction with the rest of 

the meteorite.  

Hydrated amorphous silica (i.e. opal) has also been 

identified in abundance on the surface of Mars [10,11] 

where it has been formed at low temperatures (ca 0ºC) 

and by acid alteration of silicate minerals [12]. A simi-

lar low temperature hydrothermal asteroidal origin for 

the fragments of opal in EET83309 cannot be ruled 

out. Based on the evidence provided, an extraterrestrial 

origin for the ureilitic opal is more likely than a terres-

trial weathering origin. 
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