The Volcanic Evolution of Syrtis Major Planum, Mars

Thesis

How to cite:


For guidance on citations see FAQs.

© 2016 Peter Fawdon

Version: Version of Record

Link(s) to article on publisher’s website:

http://dx.doi.org/doi:10.21954/ou.ro.0000bbb9

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Description of map units:

Amazonian/Hesperian dark plains unit
- Smooth infilling material
- Linear ridges of bright material
- Linear channels
- Grabens appear infilled with smooth infilling material
- Lineation is widespread, especially in the south of Hesperian plains.
- Channels and ridges.
- Generally superposed by Hvp; forms a "strand line" scars across. Trend downhill, often on the inner lobe, mantling underlying regions.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.
- Vent proximal lava surfaces.
- Extrusive basaltic lava unit from Syrtis Major. Bright to mottled in daytime THEMIS; very bright in night-time THEMIS. Few linear ridges of bright material.
- Ridges grade into and out of topography.
- Unknown always accompanied by eHfr.
- Smaller, late-stage fissure vents.
- Inverted SCFZ.
- Presence of a stranded, prehistoric lava flow.
- Dominant, semi-tessellating polygonal chains of linear mounds.
- Hummocky surface with a lobate raised margin.
- Some central peaks have pits.
- Central peaks have pits; rarely overlain by eHfr.
- Inverted SMCCC subsidence.