Creativity and positive emotions in studying: Novel possibilities for improving students’ learning

How to cite:

For guidance on citations see FAQs.

oro.open.ac.uk
Creativity and positive emotions in studying: Novel possibilities for improving students’ learning
Giovanni B. Moneta & Jekaterina Rogaten
London Metropolitan University, London, UK

Introduction
Recent research on students learning identified that positive affect is a strong predictor of higher academic performance even after controlling statistically for prior academic performance (Rogaten et al., 2013). Creativity is a variable that has been systematically found to link in with positive affect in achievement contexts.

Experimentally induced positive mood has been found to result in more flexible and innovative generation of information, more unusual word associations, better problem solving, more creative flexibility and more divergent thinking (e.g., Hirt et al., 2008; Isen et al., 1987; Vosburg, 1988). Therefore, positive affect appears to facilitate various cognitive processes associated with creative thinking.

The predictive effects of use of creative cognition on positive affect have rarely been studied. A notable exception is represented by Amabile and co-workers’ (2005) longitudinal diary study of team project work in organizations. They found evidence of lagged effects in a qualitative analysis of free-written descriptions of the work. The analysis revealed that creative work was often followed by the positive emotions of “Eureka”, pride, and relief.

Positive Affect as a Facilitator of Creative Cognition
The found effects of positive affect on the use of creative cognition are consistent with the broaden and build theory of positive emotions (Fredrickson, 1998) and with the mood as input model (Martin et al., 1993). The broaden and build theory and the mood as input model in combination entail that positive affect in a task will facilitate the activation and prolonged application of creative cognition (creative thinking strategies) to the task.

Creativity as a Facilitator of Positive Affect
The found effect of creativity on positive affect is consistent with the control-process model of self-regulation of intentional behavior (Carver & Scheier, 1990) and with the self-determination theory (Ryan & Deci, 2000). In combination these two theories entail that insofar as creative thinking accelerates progression toward the goal, positive affect will increase and that if people freely decide to use their creative thinking in delving into an endeavour, they will tend to be more intrinsically motivated, will enjoy more the activity, and hence will be more likely to experience a heightened positive affect throughout and after the endeavour.

Aims and Hypotheses
This study investigates the longitudinal relationships between positive affect and use of creative cognition in the domain of studying, using a two-wave (semester 1, semester 2) study design. Based on the reviewed empirical evidence and the proposed theoretical arguments, the following two hypotheses are posited:

H1: Positive affect in studying in semester 1 will be positively associated with use of creative cognition in studying in semester 2.

H2: Use of creative cognition in studying in semester 1 will be positively associated with semester 2 positive affect.

Method
Participants and Procedure
An opportunity sample of 130 undergraduate students (30 males, 100 females) from a London University took part in this two-wave study. For each participant, the data were gathered in semester 1 (first wave) and semester 2 (second wave) of the academic year.

Measures
Use of Creative Cognition Scale (UCCSS) in Studying is a 5-item self-reported questionnaire measuring the tendency to deploy creative cognition to problem solving in studying (e.g., “I find different and innovative ways of answering questions by combining multiple ideas”) (Rogaten & Moneta, in press).

Positive and Negative Affect Schedule – Short Form (I-PANAS-SF) is a list of ten adjectives, five measuring positive affect (e.g., “attentive”) and five measuring negative affect (e.g., “nervous”) (Thompson, 2007).

Results
The hypothesized and alternative models were tested using structural equation modeling as implemented in LISREL 8.8. In all models, positive affect and use of creative cognition were defined as latent variables.

Four competing structural equation models were estimated:

- The stability model (Model 1) specifies temporal stabilities between semester 1 positive affect and semester 2 positive affect and between semester 1 use of creative cognition and semester 2 use of creative cognition as well as cross-sectional correlations between positive affect and use of creative cognition.
- The causality model (Model 2) has paths identical to the stability model (Model 1) but additionally includes a cross-lagged structural path from semester 1 positive affect to semester 2 use of creative cognition.
- The reversed causality model (Model 3) has paths identical to the stability model (Model 1) but additionally includes a cross-lagged structural path from semester 1 use of creative cognition to semester 2 positive affect.
- The reciprocal model (Model 4) has paths identical to the stability model (Model 1) but additionally includes cross-lagged structural paths from Model 1 and Model 2.

The four models were compared by means of the chi-square difference test. The fit of each model was evaluated using the following indices for satisfactory fit: the Comparative Fit Index (CFI) and the Non-Normed Fit Index (NNFI) with the cutoff point of .95, the Standardized Root Mean Square Residual (SRMR) with the cutoff point of .08, and the Root Mean Square Error of Approximation (RMSEA) with the cutoff point of .08 (Hu & Bentler, 1999).

Table 1: Goodness-of-fit indices for the alternative positive affect – use of creative cognition models.

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>RMSEA</th>
<th>CFI</th>
<th>NNFI</th>
<th>SRMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>195</td>
<td>.055</td>
<td>.97</td>
<td>.97</td>
<td>.08</td>
</tr>
<tr>
<td>Model 2</td>
<td>193</td>
<td>.037</td>
<td>.97</td>
<td>.97</td>
<td>.08</td>
</tr>
<tr>
<td>Model 3</td>
<td>193</td>
<td>.037</td>
<td>.97</td>
<td>.97</td>
<td>.08</td>
</tr>
<tr>
<td>Model 4</td>
<td>193</td>
<td>.037</td>
<td>.97</td>
<td>.97</td>
<td>.08</td>
</tr>
</tbody>
</table>

In all, the hypothesized reciprocal model (Model 4) was superior to the cross-lagged instability model (Model 3) but additionally includes cross-lagged structural paths from Model 1 and Model 2.

The causality model (Model 2) was superior to the stability model (Model 1) (Δχ²(1) = 3.8, p = .05). The reversed causality model (Model 3) failed by a small margin to outperform the stability model (Model 1) (Δχ²(1) = 3.8, p = .05). Finally, the reciprocal model (Model 4) was superior to the stability model (Model 1) (Δχ²(2) = 9.67, p = .008) and the causality model (Model 2) (Δχ²(2) = 4.37, p = .037) and the reversed causality model (Model 3) (Δχ²(1) = 5.87, p = .015), implying that both the cross-lagged path from semester 1 positive affect to semester 2 use of creative cognition and the cross-lagged path from semester 1 use of creative cognition to semester 2 positive affect are significant.

In all, the hypothesized reciprocal model (Model 4) is the best fitting of the four models.

Figure 1: The estimated reciprocal positive affect – use of creative cognition model

Discussion
There is an asymmetry between the two causal relationships in terms of the empirical support they have received to date. On one hand, the relationship from positive affect to use of creative cognition has received robust support in both experimental studies and longitudinal studies. On the other hand, the relationship from use of creative cognition to positive affect has been much weaker. One finding that this relationship holds for students in university settings is an important addition to knowledge that opens novel opportunities for improving students’ learning.

Applications
Research consistently found that the positive affect students experience when engaging in study activities predicts better academic performance (e.g., Arnto et al., 2012; Saklofske et al., 2012; Rogaten et al., 2013). Therefore, positive affect in study-related activities is of prime theoretical importance for interventions aimed at enhancing students’ positive affect and, in turn, their academic performance.

Limitations
This study has three key limitations that should be considered in interpreting the findings and be addressed in future research:

1. The self-reported nature of the data could have inflated the strength of the reciprocal relationship between positive affect and use of creative cognition.
2. A two-wave design can only suggest causality; this is particularly the case for a reciprocal model, as a third, unmeasured variable might be a cause or a mediator of both variables, incorporating them both into the same reciprocal relationship.
3. A two-wave design with a relatively short follow-up time does not support inferences concerning the dynamics and long-term development of the found reciprocal relationship.

Conclusions
Despite its limitations, the present study is the first one to establish the reciprocal relationship between positive affect and use of creative cognition in educational settings. Moreover, it provides a preliminary framework for designing interventions aimed at improving students’ positive affect in studying by stimulating their use of creative cognition in studying.

References


