A study of the potential release of bioaerosols from containers as a result of reduced frequency residual waste collections

How to cite:

For guidance on citations see FAQs.

© 2016 Elsevier

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.scitotenv.2016.10.060

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
A study of the potential release of bioaerosols from containers as a result of reduced frequency residual waste collections

* Open University, Department of Mathematics, Computing and Technology, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, UK

* Corresponding author: Tel.: +44 1908 653767; E-mail: toni.gladding@open.ac.uk

ABSTRACT

Microorganisms have the potential to grow within waste containers if waste is stored for longer periods as a result of an extended residual waste collection cycle. Release of microorganisms as bioaerosols during waste collection and processing may be an occupational risk to workers within the industry. There may be many constituents of the bioaerosol that may be of concern, however, there are currently only workplace exposure limits proposed for endotoxin (90 EU m$^{-3}$). A field-scale trial was established to determine the concentration of mesophilic bacteria, Gram-negative bacteria, Listeria monocytogenes, thermotolerant fungi, Aspergillus fumigatus, endotoxin and (1→3)-β-D-glucan in air within bins containing either bagged or loose residual waste, in warm (23 °C) or cold (7 °C) conditions, to simulate an extended collection cycle. Fresh waste was added during the first four weeks, with an additional ‘missed collection’ phase of a further four weeks where no more waste was added. A second trial examined the microbiological components of bioaerosols associated with ‘tipping’ the bins, simulating the moment when bins are emptied into waste collection vehicles. The majority of
mesophilic bacteria, fungi and _A. fumigatus_ concentrations were recorded when fresh material was added to the bins, with only mesophilic bacteria recorded up to week 6 during the ‘missed collection’ phase. (1→3)-β-D-glucan concentrations were variable throughout the first trial, (geometric mean range 0.4-13.8 ng m\(^{-3}\)). Perhaps the bioaerosol component of most interest was endotoxin (geometric mean range 0.52-1288 EU m\(^{-3}\)). Elevated endotoxin concentrations were recorded during the ‘missed collection’ phase of the extended collection cycle and during ‘tipping’. This data demonstrates significant concentrations of bioaerosols and particularly endotoxin can be generated during prolonged residual waste storage and collection. As endotoxin is a bioaerosol component of concern it can be concluded there is the potential for workplace exposure hence identifying key areas for risk assessment.

Keywords: (1→3)-β-D-glucan, _Aspergillus fumigatus_, endotoxin, waste, occupational risk.

1. Introduction

Residual waste is all the material that is left after the recyclables have been removed, and may consist of organics (including kitchen waste), plastics, cans, glass and various other recyclable and non-recyclable components. Householders may deposit this material either loose or bagged, and the size of residual waste bins are often restricted to 120 litres to encourage materials to be deposited in recycling containers. In a bid to bring the UK’s household recycling rates in line with the European Union’s target of 50% of household waste recycled by 2020 (EC, 2008) many UK Councils have extended residual waste collection cycles to fortnightly or three-weekly (Gladding, 2009). Indeed, this practice is not uncommon within Europe, particularly in Germany. Within the UK devolved regions, more stringent local government targets of 70% by 2025 have also been introduced (Scottish Government, 2010, Welsh Assembly Government, 2010). Monthly bin collections of residual
waste have also been suggested, although public opinion has hampered progress in this area
(Yates, 2016). One reason for this lack of support is often due to the perception that bins
would become a nuisance via odours but also because of public health fears regarding
vermin. However, there is also concern they could also provide a breeding ground for
microorganisms, particularly in bins where nappies and organic wastes are deposited.

The health effects of bioaerosols are of interest as they have the potential to be released
whenever the bin is opened, such as when waste is added and when a bin is emptied.
Bioaerosols potentially contain aerosolised biological material such as bacteria, fungi,
viruses, endotoxins and (1→3)-β-D-glucan which may all have health impacts ranging from
upper airways irritation, nausea, and fever to potential lung inflammation and respiratory
illness (Gutarowska et al., 2015, Swan et al., 2003, Searl, 2008). However, only endotoxin,
found in the cell walls of gram-negative bacteria, has a demonstrable increased risk of
symptoms alongside increased exposure (Searl, 2008). As a result, currently, there are no
agreed upon workplace exposure limits for any bioaerosol components (Walser et al., 2015).
In a recent comprehensive review no suitable exposure-response relationships could be found
between the microbial component of bioaerosols and human health due to insufficient and
comparable data in the literature, the range of health effects, and insufficient exposure
assessment (Walser et al., 2015). It has also been noted that variability in response due to
individual risk factors is also a barrier to the setup of reliable exposure-response relationships
for inhaled biological agents (Searl, 2008). Various authors have reported exposure
thresholds in the literature ranging from 10^3 cfu m$^{-3}$ and 10^5 cfu m$^{-3}$ for both general bacteria
and total fungi (Eduard et al., 2012; Kuijer et al., 2010; Searl and Crawford, 2012). The
Health council of the Netherlands has imposed a 30 EU m$^{-3}$ limit on endotoxin released from
livestock farms for the protection of the public and an occupational limit of 90 EU m$^{-3}$
Rylander (1997) has suggested a 10 ng m\(^{-3}\) guideline value for exposure to (1→3)-β-D-glucan.

Although not occupational, the Environment Agency in the UK has applied precautionary environmental limits to bioaerosols that are emitted downwind of waste compost sites in order to protect the public (1000 cfu m\(^{-3}\) for bacteria, 500 cfu m\(^{-3}\) for *Aspergillus fumigatus* and 300 cfu m\(^{-3}\) for Gram-negative bacteria) (EA, 2009). In the absence of validated occupational limits, data from this study was also assessed against these more stringent reference guidelines.

Whilst some work has been undertaken to assess the health risks associated with bioaerosols emitted from general waste collection (Neumann et al., 2005, Roodbari et al., 2013, Kuijer et al., 2010, Neumann et al., 2014, Neumann et al., 2015, Schantora et al., 2015), source separated recyclable collection (Heldal et al., 1997) and indoor storage of organic waste (Wouters et al., 2000) no studies to date have detailed the risks associated with storage and collection of containers (bins) containing only the residual fraction after recycling. Therefore, the aims of this study were three-fold:

1) To explore the potential for bioaerosol emissions arising from the extended storage of residual waste material,

2) To explore the link between these emissions and potential health impacts on householders and waste collectors, and,

3) To provide further evidence to support the development of guidance to local authorities that may be considering extended waste collections in the future.

2. Material and methods

2.1. Experimental setup
Household-sized wheeled bins (240 litres) were stored under ‘simulated waste disposal’ and ‘tipping’ conditions at a dedicated indoor field site facility at the Open University (52°1′27″N, 0°42′20″W). The facility space was in two parts, and was approximately 5 m x 5 m at 23 °C in one part, with a separated refrigerated container measuring 5 m x 10 m at 7 °C in the other. Data were collected between July and September, 2013. ‘Simulated waste disposal’ bins were divided by waste addition method, e.g. bagged (black plastic refuse sacks tied at the top) and loose (waste material emptied straight into the bin). Each waste treatment was further subdivided into summer (warm) and winter (cold) groupings in the separated field site facility areas (23 °C and 7 °C respectively). Temperatures were checked in the airspace of the bins and in the atmosphere of these areas daily utilising calibrated digital thermometers. This culminated in four subgroups (n = 6 in each) namely, bagged, warm (BW); loose, warm (LW); bagged, cold (BC), and loose, cold (LC). Mixed residual waste (4.5 kg; see section 2.2, Table 1) was added to each bin once a week for four weeks and subsequently left for a further four weeks to simulate householder deposition and subsequent missed collection on an extended frequency. Therefore, results from week 2 could be used to assess the risk to householders and collectors after a fortnightly waste collection, week 4 could be used to assess the risk to householders and collectors after an extended four-weekly collection, and results at week 8 could be used to assess the risk to householders and collectors after a missed collection of an extended four-weekly collection cycle.

To further simulate the risks posed to waste operators involved in bin emptying, a ‘tipping’ scenario was established. ‘Tipping’ was standardised by laying the bins on their side and agitating them for 10 seconds to replicate the disturbance caused when wheeled bins are emptied or moved. Bins (n = 6) containing loose, warm waste (23 °C) (expected to be the ‘worst case scenario’) were left undisturbed for four weeks (LW4) and then agitated as described to mimic the activity of tipping bins into a waste collection vehicle. Subsequently,
the bins used in the eight-week ‘simulated waste disposal’ trial were left for a further week before tipping and agitating (week 9; LW9, BW9, LC9 & BC9). In this instance, waste was added at time 0 and 1 day prior to tipping for LW4. The last addition of waste to the other treatments was as for the ‘simulated waste disposal’ scenario, i.e. in week 4.
Table 1: The composition of waste added to the bins during weeks 1 to 4.

<table>
<thead>
<tr>
<th>Waste category</th>
<th>Source</th>
<th>Specific waste</th>
<th>Week 1 (kg)</th>
<th>Week 2 (kg)</th>
<th>Week 3 (kg)</th>
<th>Week 4 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food waste</td>
<td>Local markets, food deposited on plastics, out of date material, university food waste</td>
<td>Vegetables: Potatoes, onions, courgettes, carrots (uncooked), some apples; Week 2 onwards</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meat: Beef mince, chicken legs (uncooked); Week 4 cooked ham</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fish: Fish fingers (uncooked)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bread: Pitta breads</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Garden waste</td>
<td>University premises garden waste</td>
<td>Hay, grass</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Woodchips</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stones: Gravel</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Paper</td>
<td>University waste paper</td>
<td>Newspaper</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Card</td>
<td>Primarily as packaging for end of life material and from university recycling</td>
<td>Cardboard cut to size</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Textiles</td>
<td>Bought commercially</td>
<td>Cotton rags, Week 4 cotton t-shirts</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sanitary materials</td>
<td>Commercial nursery</td>
<td>Nappies</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Plastics and plastic film</td>
<td>Primarily as packaging for end of life material and from University recycling</td>
<td>2D: Heavy duty plastic bags</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3D: Plastic bottles</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Metals</td>
<td>University recycling</td>
<td>Soiled drinks cans</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>4.46</td>
<td>4.46</td>
<td>4.46</td>
<td>4.16</td>
</tr>
</tbody>
</table>

1Vegetable category accurate to within 0.05kg, all other categories accurate to within 0.02 kg
Table 2: A summary of the sampling strategy

<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BW & LW</td>
<td>BC & LC</td>
<td>Waste deposited in</td>
<td>Waste deposited in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW & LW</td>
<td>BW & LC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BW & LW</td>
<td>BC & LC</td>
<td>Waste deposited in</td>
<td>Waste deposited in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW & LW</td>
<td>BC & LC, PCR</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BW & LW</td>
<td>BC & LC</td>
<td>Waste deposited in</td>
<td>Waste deposited in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW & LW</td>
<td>BC & LC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BW & LW</td>
<td>BC & LC</td>
<td>LW4</td>
<td>Waste deposited in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BW & LW</td>
<td>BW & LC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BW & LW</td>
<td>BC & LC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BW & LW</td>
<td>BC & LC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BW & LW</td>
<td>BC & LC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>BW & LW</td>
<td>BC & LC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>BW9, LW9</td>
<td>BC9, LC9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trial 1, simulated extended waste collection: BW = bagged waste at 23°C, LW = loose waste at 23°C, BC = bagged waste at 7 °C & LC = loose waste at 7 °C.

Trial 2, tipping (*italics*): LW4 = loose waste at 23 °C, week 4; LW9 = loose waste at 23 °C, week 9; BW9 = bagged waste at 23 °C, week 9; LC9 = loose waste at 7 °C, week 9; BC9 = bagged waste at 7 °C, week 9.
2.2. Waste properties

Waste was chosen to reflect typical waste compositions (Table 1) and were taken from Parfitt and Bridgewater (2010) with slight modifications to account for ‘fines’ and ‘other organics’ which were not defined, and to remove glass and replace it with other packaging in the interests of safe handling. The following assumptions were made to determine the quantity of material to be added to the bins per week: On average, one person generates 428 kg of waste a year which, with a 43% recycling rate (DEFRA, 2013) results in approximately 4.7 kg of residual waste per person a week. Previous scoping studies from Zero Waste Scotland (ZWS) (Gladding, unpublished) on an extended waste collection scheme in Germany showed that, on average, 37% of all waste material was deposited in the residual bin. Based on the waste generation figure above, this equates to 3 kg of residual waste per person a week. Waste generation is also falling by around 2% a quarter (DEFRA, 2013). Therefore, taking all of these figures into account, and assuming a two-person household, a target of 4.5 kg of residual waste per bin per week was considered acceptable.

2.3. Bioaerosol sampling

A trial of 12 bins (6 using a clear plastic bag and 6 a chamber) was undertaken to identify the best method of sampling the bioaerosols from the bins. All microbiological analysis in the trial was as for the main study. Based upon these results it was decided that a clear plastic bag (240 l) would be taped to the opening of the bin immediately after waste depositing and left for approximately 4 days before sampling to catch all emissions after deposition to model a ‘worst case scenario’. Prior to sampling air (200 l) was pumped into the bag through a sealable porthole at the top of the bin. Bioaerosols were captured using liquid impingers (SKC BioSamplers and Biolite air sampling pumps, SKC Ltd. Blandford Forum, UK) containing 20 ml of sterile non-pyrogenic water (Associates of Cape Cod Intl. Inc.,
Liverpool, UK) at a rate of 12.5 l min$^{-1}$ for 10 minutes through a sealable porthole in the sampling bag. Bioaerosol samples, bin mass and headspace measurements were taken on a weekly basis for the duration of the trial. The sampling strategy can be found in Table 2. Samples were transported from the field site to the laboratory and microbiological determinants were processed immediately. Aliquots (1 ml) were stored at -20 °C for subsequent endotoxin and (1→3)-β-D-glucan analysis. The remaining liquid was stored at -20 °C for molecular analysis.

2.4. Microbiological analysis

2.4.1. Enumeration

Aliquots of the impinger liquid (100 µl) were spread-plated in triplicate onto ½-strength nutrient agar containing 100 mg l$^{-1}$ cycloheximide for total mesophilic bacterial counts, MacConkey agar No. 3 containing 200 mg l$^{-1}$ cycloheximide for Gram-negative bacteria, Listeria selective media (Oxford formulation) containing Listeria selective supplement for Listeria monocytogenes and malt extract agar containing 20,000 U l$^{-1}$ penicillin and 40,000 U l$^{-1}$ streptomycin for total fungi favouring A. fumigatus. Plates were incubated for 48 hours (counted again after 7 days for L. monocytogenes) at 37 °C for bacteria and at 40 °C for fungi. All media were obtained from Oxoid Ltd. (Basingstoke, UK) and supplements from Fisher Scientific (Loughborough, UK) and Sigma Aldrich (Dorset, UK). Hence all bioaerosols collected were culturable, that is they were able to grow on agar. This method, including media and incubation temperatures, followed the Environment Agency (England and Wales) recommended ‘AfOR Protocol’ (2009). This protocol is in common use throughout the UK to assess bioaerosols from open windrow composting sites and other organic waste treatment facilities, as a result the study is not designed to identify all
mesophilic bacteria and fungi that might grow on waste but to align with the standards by which emissions are measured from UK facilities.

2.4.2. Confirmation

Colonies chosen for molecular confirmation were collected from counted plates in weeks 2, 4 and 8. Presumptive Gram-negative and *L. monocytogenes* colonies were suspended in sterile phosphate-buffered saline (PBS) and pelleted. DNA was extracted using the PureLink® Genomic DNA kit (Life Technologies, Paisley, UK) according to the manufacturer’s instructions and sent to GATC Biotech AG (Köln, Germany) for PCR and sequencing using universal bacterial primers COM1 (5’-CAGCAGCCGCGTAATAC-3’) and COM2 (5’-CGTCAATTCTTTGAGTTT-3’) (Schwieger and Tebbe, 1998). Returned sequences were identified using the BLASTn tool available at http://decipher.cee.wisc.edu/.

2.5. Endotoxin and (1→3)-β-D-glucan analysis

Endotoxin and (1→3)-β-D-glucan were analysed using the kinetic Pyrochrome® and Glucatell® kits respectively (Associates of Cape Cod Inc., Liverpool, UK) following the manufacturer’s instructions and analysed by a BioTek ELx808 microplate reader (BioTek Instruments Inc., Swindon, UK) according to the British Standard BS EN 14031:2003 (British Standards Institution, 2003).

2.6. Data analysis

Detection limits were 533 cfu m$^{-3}$ for all microorganisms, 0.8 EU m$^{-3}$ for endotoxin and 0.5 ng m$^{-3}$ for (1→3)-β-D-glucan. Concentrations below the limit of detection were given an arbitrary value of half the detection limit. All statistical analysis was carried out in the open-source package ‘R’. Normality was assessed using the Shapiro-Wilk test. Data remained
positively-skewed despite attempts to transform the data; therefore, all statistics were carried out on the original figures. Means were summarised using the geometric mean and a 95% bias-corrected accelerated bootstrapped confidence interval. The non-parametric tests Kruskal-Wallis, followed by the post-hoc Nemenyi test with Chi-squared approximation for independent samples, and Mann-Whitney were used to determine if there were differences in bioaerosol concentrations between treatments. Differences between normal collections (week 2) and missed collections (week 4) were determined using the Wilcoxon sign rank test. Correlations between determinants were determined using the Spearman Rank test.

3. Results

3.1. Trial Management

Temperature measurements taken in the airspace across a selection of bins confirmed that bins stored in the summer and winter groupings had an average temperature of 23 °C (min = 21.7 °C, max = 25.0 °C) and 7 °C (min = 6 °C, max = 8 °C) respectively. Approximately 4.5 to 5.0 kg of waste was added to each bin, once a week for four weeks. At four weeks bins were almost at capacity as can be seen from the head-space data (Figure 1A), particularly for bagged material (BW & BC). No further waste additions were made to simulate the scenario of a missed extended four-weekly collection. On average, approximately 4.0 kg was lost from each bin in the first four weeks after which time, mass remained constant (Figure 1B); this indicates that the majority of organic waste decomposition occurred within the first four weeks.
Figure 1: Weekly headspace and bin mass measurements over the 8-week ‘simulated waste disposal’ trial. BW = bagged waste at 23°C, LW = loose waste at 23°C, BC = bagged waste at 7°C & LC = loose waste at 7°C. Values represent the geometric mean of six replicates 95% confidence interval estimated from 5000 bootstrap samples.

3.2. Bioaerosol analysis

Although selective media were used, 16S rRNA sequencing identified presumptive Gram-negative colonies as being either *Streptomyces* spp., or *Staphylococcus* spp., neither of which are Gram-negative. Similarly, no *L. monocytogenes* were positively confirmed. Indeed, colonies grown on *Listeria* selective media were shown to be *Streptomyces* spp. and *Bacillus* spp. Therefore, the data relating to these culturable microorganisms were deemed unreliable and removed from further analysis.

3.2.1. Simulated waste disposal

Culturable microbial counts were restricted to the first six weeks of the trial. After this time, no bacteria or fungi were isolated from bioaerosols (Figure 2). Mesophilic bacteria concentrations differed significantly between waste treatments ($\chi^2 = 12.9, P < 0.01$), and
showed two peaks in concentration in BW bins, with the first peak at week 4, followed by a further peak at week 6. LW showed a higher concentration at week 4 ($P > 0.05$) but numbers were reduced to below detection limits by week 5. BC mesophilic bacterial concentrations were significantly lower than those of LW ($P < 0.01$) and were only recordable at concentrations higher than the detection limit in weeks 3 and 4. Similarly to BC, mesophilic bacteria in LC were only recordable in weeks 2-4. However, concentrations reached the highest recorded for all treatments in week 3 (3.47×10^4 cfu m$^{-3}$) and the second highest recorded in week 4 (1.47×10^4 cfu m$^{-3}$). *A. fumigatus* had a similar pattern of activity to mesophilic bacteria with the exception that there was no second peak in the BW treatment and concentrations fell to below detection limits at a slightly faster rate in all treatments (Figure 2). As for mesophilic bacteria, the highest *A. fumigatus* count was recorded in LC at week 3 (2.79×10^4 cfu m$^{-3}$). Fungi other than *A. fumigatus* growing at the 40°C incubator temperature were only recorded in one incidence (BW, week 3, 4.14×10^2 cfu m$^{-3}$; data not shown).

Figure 3 shows the concentration of endotoxins released in the bioaerosols from the different waste storage treatments. Endotoxin concentration showed a similar pattern in all treatments with a slight peak at week 1 and a much higher peak in week 7 (Figure 3). Overall endotoxin concentrations were not significantly different between treatments ($\chi^2 = 3.962$, $P > 0.05$). However, during week 7, BC was significantly lower than both LC & LW ($P < 0.05$ for both; Figure 3). It is notable that endotoxin concentrations were detected consistently above the 30 EU m$^{-3}$ exposure guideline (Health Council of the Netherlands, 2012) at week 1 and from week 5 until the end of the trial, with the highest endotoxin concentration recorded in LW in week 7 (1,313 EU m$^{-3}$). The mean concentration of (1→3)-β-D-glucan showed more variability throughout the trial (data not shown) with the highest concentration recorded in LC, in week 5 (14 ng m$^{-3}$). In fact, the data is almost cyclical. However, whilst the
Kruskal-Wallis tests indicated a significant difference between treatments ($X^2 = 9.048, P < 0.05$), the post-hoc Nemenyi with chi squared distribution test failed to distinguish where the differences lay. Nevertheless, geometric mean $(1\rightarrow3)$-β-D-glucan concentrations only exceeded the proposed 10 ng m$^{-3}$ exposure limit (Rylander, 1997) at two time points; LW, BC & LC in week 5 (11, 12 & 14 ng m$^{-3}$ respectively) and LW (10 ng m$^{-3}$) in week 8.
Figure 2: The concentrations of microorganisms emitted as bioaerosols during the ‘simulated waste disposal’ scenario. BW = bagged waste at 23°C, LW = loose waste at 23°C, BC = bagged waste at 7°C & LC = loose waste at 7°C. Values represent the geometric mean of six replicates with a 95% confidence interval estimated from 5000 bootstrap samples. The dashed line represents the detection limit.
Figure 3: Endotoxin concentrations from the bioaerosols emitted from each bin treatment during the ‘simulated waste disposal’ scenario. BW = bagged waste at 23°C, LW = loose waste at 23°C, BC = bagged waste at 7 °C & LC = loose waste at 7 °C. Values represent the geometric mean of six replicates 95% confidence interval estimated from 5000 bootstrap samples. The dashed line represents proposed exposure limits for endotoxin proposed by the Health Council of the Netherlands (2012).
Figure 4: The concentrations of microorganisms and endotoxin emitted as bioaerosols during the ‘tipping’ scenario. LW4 = loose waste at 23 °C, week 4; LW9 = loose waste at 23 °C, week 9; BW9 = bagged waste at 23 °C, week 9; LC9 = loose waste at 7 °C, week 9; BC9 = bagged waste at 7 °C, week 9. Values represent the geometric mean of six replicates 95% confidence interval estimated from 5000 bootstrap samples. The dashed line represents the detection limit.
3.2.2. Tipping

At week four, LW4 bins were tipped to assess potential bioaerosol emissions for waste collection operators emptying bins (Figure 4). In this scenario, the highest mesophilic bacteria and other fungi counts were found in LW4 (6.51 x 10^5 cfu m^{-3} and 3.64 x 10^4 cfu m^{-3} respectively). Whereas, the highest A. fumigatus counts were recorded in LC9 (3.47 x 10^4 cfu m^{-3}). As data only exists for week 4 in LW bins, statistical comparisons were only made for the treatments LW4 and LW9. According to Mann Whitney comparisons, mesophilic bacteria and other fungi counts were significantly higher in LW4 than LW9 (P < 0.01 for both) whilst the opposite held true for A. fumigatus (P < 0.01).

Endotoxin emissions during tipping are illustrated in Figure 4. Mean endotoxin emissions of 11 EU m^{-3} at week four were recorded for warm loose tipped material (LW4). By week nine, levels had increased 12-fold to 132 EU m^{-3} (LW9). Higher levels of 537 EU m^{-3} and 1217 EU m^{-3} were recorded in BW9 and LC9 material respectively. At week 9, the lowest endotoxin levels were recorded in BC9 (48 EU m^{-3}). No significant difference was observed between endotoxin concentrations in loose, warm waste at week 4 and 9 (LW4 & LW9; P > 0.05). The sometimes large variability among replicate bins is probably the reason for the lack of statistical significance. The highest (1→3)-β-D-glucan concentration was recorded in LW4 (10 ng m^{-3}) which equalled the proposed 10 ng m^{-3} exposure limit (Rylander, 1997). All other treatments were recorded at 6 ng m^{-3} or lower (data not shown). In this instance, (1→3)-β-D-glucan concentration was significantly higher in the LW4 treatment than the LW9 (P < 0.05). This suggests that emissions could be slightly different between week 4 and week 9 with (1→3)-β-D-glucan and fungi being more of an issue at week 4, and endotoxin may be more of an issue at week 9. This could have important implications for a missed bin collection that might be left for longer than four weeks.
4. Discussion

The process of breakdown of waste material begins when the material is deposited within a container ready for collection. The behaviour of organic and biodegradable materials within residual waste in storage containers are of particular interest when considering prolonged storage intervals. During this study, in the period of the trial when a fresh residual waste mix was regularly added simulating an extended waste collection, (weeks 1-4), the bins were dominated by bacterial growth from mesophilic bacteria. Although concentrations regularly exceeded the Environment Agency’s precautionary 1000 cfu m3 guideline in the bins, these measured concentrations do not necessarily equate to exposure and it should be noted all bioaerosols were sealed within the bin straight after waste deposition and concentrated to create a ‘worst case scenario’. Searl & Crawford (2012) reported that adverse health effects in waste workers was linked to concentration exceeding 10^5 cfu m3 of total viable bacteria. These higher concentrations were not reached in the bins in this part of the study, but were exceeded during ‘tipping’ which was intended to mimic an occupational activity linked to bin emptying. For the subsequent ‘missed collection’ (weeks 5-8), bacterial levels in the bins stored at 7°C (BC & LC) became undetectable. However, bacteria in the warmer bins (BW & LW) took slightly longer to reduce to below the detection limit of the method. This domination by bacteria over fungi in the bins is seen in similar studies such as Choi et al., (1998) whom on investigating food waste and found early heavy colonisation by yeasts, with subsequent growth of thermophilic bacteria after 2 days, and also reported that the activity of fungi was not significant (related to ‘in container’ growth). Ryckeboer et al., (2003) also reported that bins of organic waste are first colonised by bacteria and Mayrhofer et al., (2006), using organic material within a small bin, also found that bacteria were one to three orders of magnitude higher than fungal colonies. Hence it is
concluded that bacteria are the main initial colonisers of residual material and in longer term storage beyond one week.

It is of interest that Gram-negative bacteria were not detected on the selective media, which contained mainly Streptomyces or Staphylococcus spp. Previous studies in containers, such as Ryckeboer et al. (2003), did identify gram-negative bacteria, but most collection studies have concentrated on measuring endotoxin (Nielsen et al., (2000), Lavoie et al., (2002), Neumann et al., (2002) and Wouters et al., (2002)). Since endotoxin was detected in significant concentrations it is concluded that gram-negative bacteria were present, but were not culturable by this method. The possibilities are that they did not survive the sampling procedure or were outcompeted on the selective media by other species. One of the outcomes of this study is that measurement of gram-negative bacteria are recommended to be removed from the UK Protocol going forward as selective media are not reliable for reporting these microorganisms.

In terms of concentrations of endotoxin this increased and peaked during the ‘missed collection’ period at week 7, most likely because Gram-negative bacteria cells died after growth on material already added to the bins. Indeed, a negative correlation was recorded for endotoxin concentration and total mesophilic bacteria in both the treatments containing loose material (R = -0.64, P < 0.001 and R = -0.56 & P < 0.001 for LW & LC respectively). It is possible that lower oxygen levels, in addition to lack of fresh waste input, contributed to aerobic microorganisms dying out, thus releasing endotoxin. Endotoxin has previously been measured in waste containers, for example in the ‘percolate’ liquid from containers, (Nielsen et al., 1998) which found no difference between one to two weeks of storage and none in the bioaerosol, this is perhaps not surprising as the differences in this study were only apparent after 4-6 weeks peaking at week 7. Endotoxin as a bioaerosol has more often been measured in waste collection. Nielsen et al., (2000), Lavoie et al., (2002), Neumann et al., (2002) and
Wouters et al., (2002) all measured endotoxin in waste collections (of organic and mixed waste) and found concentrations ranging between 16-100 EU m\(^{-3}\), and hence some were above and others were below the 90 EU m\(^{-3}\) suggested as an occupational exposure limit, (Health Council of the Netherlands, 2012). However, these collections were either weekly or fortnightly. There is a lack of studies on collectors who collect residual waste after a longer storage interval, which would be interesting after the results of this study.

It is also interesting to note that internal bin temperature did not vary much in either the warm (23 °C) or cold bins (7 °C), unlike Ryckeboer et al., (2003) who saw distinct heating and cooling phases in containers of organic waste during 30 days of storage. It is possible the organic content was not sufficient to generate heating within residual wastes, or that in this study the regulation of the ambient storage temperature prevented such variations. As a result conditions which might have enabled certain species of thermophilic fungi to thrive and take over from bacteria which has been seen in studies such as that by Ryckeboer et al., (2003) did not occur in this study and concentrations of fungi were not as prevalent as bacteria.

Temperature was measured in this study as previous research has shown higher concentrations of bioaerosols in waste collection during summer conditions (Nielsen et al., 2000, Lavoie et al., 2002). However, no strong statistical associations were seen with temperature in this study.

This study favoured the growth of *Aspergillus fumigatus* due to the use of the AfOR Protocol (2009) and hence the growth of fungi at 40°C. *A. fumigatus* causes invasive aspergillosis in immunocompromised people (Latge, 1999, O'Gorman, 2011) and is often found in high numbers in bioaerosols from composting sites (Gutarowska et al., 2015) and during organic or food waste collection (Nielsen et al., 1997, Nielsen et al., 2000). Indeed Poole & Wong (2013) recommend that garden waste collectors are screened for asthma and *Aspergillus* sensitivity, cystic fibrosis, bronchiectasis and immunodeficiency if *Aspergillus*
spp. cannot be controlled sufficiently. However, in this study *A. fumigatus* appeared only sporadically in significant numbers (above the limit of detection) in weeks three and four in BW & LW, and in LC material. In a review of the literature, Kuijer et al. (2010) reported general fungal concentrations emitted from waste collections in the range of 5.9×10^3 and 6.3×10^4 cfu m$^{-3}$. Combined *A. fumigatus* and other thermotolerant fungi counts were consistently lower than these figures within the bins. Eduard et al. (2012) proposed a guideline limit of 1.0×10^5 cfu m$^{-3}$ for spores, concentrations in this study were below this but it should be noted that the growth temperature in this study may not reflect the full range of fungi that may have grown at lower temperatures. It should also be noted that existing garden waste collections have shown to have higher concentrations of total fungi, and *A. fumigatus* in particular, (Nielsen et al., 1997) than those found in this study.

With regards to the reference guidelines on *A. fumigatus* suggested by the Environment Agency to protect the public downwind of composting facilities, counts in this study exceeded the reference guideline of 500 cfu m$^{-3}$ on only one occasion each for LC, BC and BW (week 3, 2.79×10^4 cfu m$^{-3}$; week 3, 1.63×10^3 cfu m$^{-3}$; and week 4, 6.10×10^2 cfu m$^{-3}$ respectively), and twice for LW (week 3, 5.33×10^3 cfu m$^{-3}$ & week 4, 1.14×10^3 cfu m$^{-3}$); and therefore shows that *A. fumigatus* counts were consistently below this within individual bins.

It is possible that fungi, including *A. fumigatus*, were not becoming airborne in undisturbed waste due to the damp atmosphere within the bins. It is also possible however, that *A. fumigatus* is not the primary fungi of concern in material with mixed organic and residual waste, particularly if most households keep their green waste separate, or this may be a limitation of the growth temperature required by the AfOR Protocol (2009). Residual waste may have a differing emission profile from purely organic materials such as food and garden waste. Therefore, future studies should consider identifying a wider range of fungi to determine the community structure within the bins and the emissions emanating from them.
In terms of limitations to the study methodology it is important to note that the concentrations measured in this study were monitored directly from sealed bins. These concentrations should therefore be considered a ‘worst-case scenario’ from the mix generated in the laboratory but should also not be directly related to exposure, hence the results are considered illustrative. It should also be noted that temporary exposure from opening a non-sealed bin to throw out waste will not necessarily lead to the same level of exposure. It is noted that there is a lack of exposure-response data to determine the impact of different exposure times. However, based on available information, the concentrations of bacteria and fungi measured should not present an issue to the average healthy adult. Opening a lid outside could also lead to faster dispersal and dissipation of waste emissions, compared to the controlled conditions of the laboratory.

In summary, the primary issue for householders with extended four-weekly collections appears to be elevated airborne bacteria up to the four-week point, and elevated endotoxin thereafter should the extended collection be missed. This reinforces the importance of managing missed collections, such as those beyond four weeks. However, there was no significant difference in concentrations of mesophilic bacteria, A. fumigatus, other fungi, endotoxin and (1→3)-β-D-glucan ($P > 0.05$ for all) in bins associated with fortnightly collections (weeks 2) and the extended four-weekly collection (week 4). The only two exceptions being a significantly higher concentration of A. fumigatus in LW at week 4 than week 2 ($P < 0.05$), and a significantly higher concentration of (1→3)-β-D-glucan in BW in week 2 than week 4 ($P < 0.05$). It is also important to note this study only examined bioaerosols, and handling of waste materials may lead to hand-to-mouth transmission, but this was not within the scope of this study and should be explored further in subsequent work.

For waste collectors, the movement and disturbance of waste material presents the greatest issues and concerns. ‘Tipping’ tests were designed to determine whether disturbance
may cause waste components to become airborne. Based on the concentrations measured, the study suggests there may be some risks associated with the potential inhalation of endotoxin during the ‘disturbance’ of bins that have been stored for up to eight weeks, i.e. a missed extended collections, with concentrations at week 4 peaking at 35 EU m$^{-3}$ and at week 9 at 533 EU m$^{-3}$. The potential risk of exposure to bioaerosols is an issue that waste collectors should have included in COSHH (Control of Substances Hazardous to Health) risk assessments that should be undertaken prior to collection of such wastes which should specifically mention the issues associated with bioaerosols and mitigation measures, e.g. handling measures and any protective equipment.

5. Conclusions

When introducing an extended collection programme, local authorities should provide advice for householders that will help to minimise exposure to emissions; for example, to start bagging waste in warmer conditions. Missed collections on an extended cycle should also be minimised as much as possible; the importance of frequency is demonstrated by endotoxin concentrations which increase after four weeks. As a range of microorganisms were found aerosolised from enclosed waste containers, it is recommended householders should also receive advice regarding hand-to-mouth transmission.

COSHH risk assessments need to be carried out for collectors of residual waste materials on extended collection cycles, for microorganisms and particularly endotoxin which has a known dose-response relationship. Because of the presence of endotoxin in significant concentrations within the waste and hence potential for aerosolisation during processing at a facility, it is also advised that waste operatives, including collectors and processing staff, undergo evidence-based worker health surveillance for early signs of occupational illness.

References

