Full proof of the existence of a degree 8 circulant graph of order \(L(8,k) \) of arbitrary diameter \(k \)

Other

How to cite:

Lewis, Robert (2014). Full proof of the existence of a degree 8 circulant graph of order \(L(8,k) \) of arbitrary diameter \(k \). arXiv.
Full proof of the existence of a degree 8 circulant graph of order $L(8, k)$ of arbitrary diameter k

R. R. Lewis
Department of Mathematics and Statistics
The Open University
Milton Keynes, UK
robert.lewis@open.ac.uk

10th April 2014

This is the full proof of Theorem 3 in the paper “The degree-diameter problem for circulant graphs of degree 8 and 9” by the author [2]. To avoid the paper being unduly long it includes only the exceptions for the orthant of v_1 for diameter $k \equiv 0 \pmod{2}$ and for $k \equiv 1 \pmod{2}$. In the version below the exceptions for all eight orthants for diameter $k \equiv 0$ and $k \equiv 1 \pmod{2}$ are included in full. This proof closely follows the approach taken by Dougherty and Faber in their proof of the existence of the degree 6 graph of order $DF(6, k)$ for all diameters $k \geq 2$ [1].

Theorem 3. For all $k \geq 2$, there is an undirected Cayley graph on four generators of a cyclic group which has diameter k and order $L(8, k)$, where

$$L(8, k) = \begin{cases}
(k^4 + 2k^3 + 6k^2 + 4k)/2 & \text{if } k \equiv 0 \pmod{2} \\
(k^4 + 2k^3 + 6k^2 + 6k + 1)/2 & \text{if } k \equiv 1 \pmod{2}
\end{cases}$$

Moreover for $k \equiv 0 \pmod{2}$ a generator set is \{1, $(k^3 + 2k^2 + 6k + 2)/2, (k^4 + 4k^2 - 8k)/4, (k^4 + 4k^2 - 4k - 4)/4\}$, and for $k \equiv 1 \pmod{2}$, \{1, $(k^3 + k^2 + 5k + 3)/2, (k^4 + 2k^2 - 8k - 11)/4, (k^4 + 2k^2 - 4k - 7)/4\}$.

Proof. We will show the existence of four-dimensional lattices $L_k \subseteq \mathbb{Z}^4$ such that \mathbb{Z}^4/L_k is cyclic, $S_k + L_k = \mathbb{Z}^4$, where S_k is the set of points in \mathbb{Z}^4 at a distance of at most k from the origin under the l^1 (Manhattan) metric, and $|\mathbb{Z}^4 : L_k| = L(8, k)$ as specified in the theorem. Then, by Theorem 1 of [2], the resultant Cayley graph has diameter at most k.

Let $a = \begin{cases}
 k/2 & \text{for } k \equiv 0 \pmod{2} \\
 (k + 1)/2 & \text{for } k \equiv 1 \pmod{2}.
\end{cases}$

For $k \equiv 0 \pmod{2}$ let L_k be defined by four generating vectors as follows:

$$
\begin{align*}
\mathbf{v}_1 &= (-a - 1, a + 1, a, -a + 1) \\
\mathbf{v}_2 &= (a - 1, a + 1, a + 1, -a) \\
\mathbf{v}_3 &= (-a - 1, -a + 1, a + 1, -a) \\
\mathbf{v}_4 &= (-a, -a, a, a + 1)
\end{align*}
$$
Then the following vectors are in L_k:

$$-(2a^2 + 2a + 1)v_1 + (2a^2 + a + 2)v_2 - (a + 2)v_3 + v_4 = (4a^3 + 4a^2 + 6a + 1, -1, 0, 0),$$
$$-(2a^3 - 1)v_1 + (2a^3 - a^2 + 2a - 2)v_2 - (a^2 + a - 1)v_3 + (a - 1)v_4 = (4a^4 + 4a^2 - 4a, 0, -1, 0),$$
$$-2a^3v_1 + (2a^3 - a^2 + 2a - 1)v_2 - (a^2 + a - 1)v_3 + (a - 1)v_4 = (4a^4 + 4a^2 - 2a, 0, 0, -1)$$

Hence we have $e_2 = (4a^3 + 4a^2 + 6a + 1)e_1, e_3 = (4a^4 + 4a^2 - 4a)e_1$ and $e_4 = (4a^4 + 4a^2 - 2a)e_1$ in \mathbb{Z}^4/L_k, and so e_1 generates \mathbb{Z}^4/L_k.

Also $\det \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \det \begin{pmatrix} 8a^4 + 8a^3 + 12a^2 + 4a & 0 & 0 & 0 \\ 4a^3 + 4a^2 + 6a + 1 & -1 & 0 & 0 \\ 4a^4 + 4a^2 - 4a & 0 & -1 & 0 \\ 4a^3 + 4a^2 - 2a & 0 & 0 & -1 \end{pmatrix} = -(8a^4 + 8a^3 + 12a^2 + 4a) = -(k^4 + 2k^3 + 6k^2 + 4k)/2 = -L(8, k)$, as in the statement of the theorem.

Thus \mathbb{Z}^4/L_k is isomorphic to $\mathbb{Z}_{L(8,k)}$ via an isomorphism taking e_1, e_2, e_3, e_4 to $1, 4a^3 + 4a^2 + 6a + 1, 4a^4 + 4a^2 - 4a, 4a^4 + 4a^2 - 2a$. As $a = k/2$ this gives the first generator set specified in the theorem: $\{1, (k^3 + 2k^2 + 6k + 1)/2, (k^4 + 4k^3 - 8k)/4, (k^4 + 4k^2 - 4k)/4\}$.

Similarly for $k \equiv 1 \pmod{2}$ let L_k be defined by four generating vectors as follows:

$$v_1 = (-a + 1, a + 1, -a + 1, a)$$
$$v_2 = (a + 1, a + 1, -a + 2, a - 1)$$
$$v_3 = (-a - 1, a - 1, a - 1, -a)$$
$$v_4 = (-a, a, a, a - 1)$$

In this case the following vectors are in L_k:

$$-(2a^2 + a + 2)v_1 + (2a^2 + 2a + 1)v_2 - a^2v_3 - v_4 = (4a^3 - 4a^2 + 6a - 1, -1, 0, 0),$$
$$-(2a^3 - a^2 - 2a - 2)v_1 + (2a^3 - 4a - 1)v_2 - (a^2 - a - 1)v_3 - (a - 1)v_4 = (4a^4 - 8a^3 + 8a^2 - 8a, 0, -1, 0),$$
$$-(2a^3 - a^2 - 2a - 1)v_1 + (2a^3 - 4a)v_2 - (a^2 - a - 1)v_3 - (a - 1)v_4 = (4a^4 - 8a^3 + 8a^2 - 6a, 0, 0, -1).$$

Hence we have $e_2 = (4a^3 + 4a^2 + 6a - 1)e_1, e_3 = (4a^4 - 8a^3 + 8a^2 - 8a)e_1$ and $e_4 = (4a^4 - 8a^3 + 8a^2 - 6a)e_1$ in \mathbb{Z}^4/L_k, and so e_1 generates \mathbb{Z}^4/L_k.

Also $\det \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \det \begin{pmatrix} 8a^4 - 8a^3 + 12a^2 - 4a & 0 & 0 & 0 \\ 4a^3 - 4a^2 + 6a - 1 & -1 & 0 & 0 \\ 4a^4 - 8a^3 + 8a^2 - 8a & 0 & -1 & 0 \\ 4a^4 - 8a^3 + 8a^2 - 6a & 0 & 0 & -1 \end{pmatrix} = -(8a^4 - 8a^3 + 12a^2 - 4a) = -(k^4 + 2k^3 + 6k^2 + 4k + 1)/2 = -L(8, k)$, as in the statement of the theorem.

Thus \mathbb{Z}^4/L_k is isomorphic to $\mathbb{Z}_{L(8,k)}$ with generators $1, 4a^3 - 4a^2 + 6a - 1, 4a^4 - 8a^3 + 8a^2 - 8a, 4a^4 - 8a^3 + 8a^2 - 6a$. As $a = (k + 1)/2$ in this case, this gives the second generator set specified in the theorem: $\{1, (k^3 + 5k^2 + 3k + 1)/2, (k^4 + 2k^3 - 4k^2 - 8k + 11)/4, (k^4 + 2k^2 - 4k - 7)/4\}$.

It remains to show that $S_k + L_k = \mathbb{Z}^4$. First we consider the case $k \equiv 0 \pmod{2}$.

For $k = 2$, it is straightforward to show directly that \mathbb{Z}_{32} with generators $1, 4, 6, 15$ has
with \(v_1, v_2, v_3, v_4 \) as defined for \(k \equiv 0 \pmod{2} \). Then the 16 vectors \(\pm v_i \) for \(i = 1, \ldots, 8 \) provide one element of \(L_k \) lying strictly within each of the 16 orthants of \(\mathbb{Z}^4 \). Most of the coordinates of these vectors have absolute value at most \(a+1 \). Only \(\pm v_5 \) and \(\pm v_7 \) each have one coordinate with absolute value equal to \(a+2 \).

Now we consider the case \(k \equiv 1 \pmod{2} \). For \(k = 3 \) it may be shown directly that \(\mathbb{Z}_{104} \) with generators 1, 16, 20, 27 has diameter 3. So we assume \(k \geq 5 \), so that \(a \geq 3 \), and let

\[
\begin{align*}
v_5 &= v_1 - v_2 - v_4 = (-a, a, -a-1, -a+2) \\
v_6 &= v_2 + v_3 - v_4 = (a, a, -a+1, -a) \\
v_7 &= v_1 + v_3 - v_4 = (-a, a, a-1, -a+1) \\
v_8 &= v_1 - v_2 + v_3 = (-a+1, -a+1, -a, a+1)
\end{align*}
\]

with \(v_1, v_2, v_3, v_4 \) as defined for \(k \equiv 1 \pmod{2} \), so that the 16 vectors \(\pm v_i \) provide one element of \(L_k \) lying strictly within each of the orthants of \(\mathbb{Z}^4 \). In this case all the coordinates of these vectors have absolute value at most \(a+1 \).

We must show that each \(x \in \mathbb{Z}^4 \) is in \(S_k + L_k \), which means that for any \(x \in \mathbb{Z}^4 \) we need to find a \(w \in L_k \) such that \(x - w \in S_k \). However \(x - w \in S_k \) if and only if \(\delta(x, w) \leq k \), where \(\delta \) is the \(l^1 \) metric on \(\mathbb{Z}^4 \). If \(x, y, z \in \mathbb{Z}^4 \) and each coordinate of \(y \) lies between the corresponding coordinate of \(x \) and \(z \) or is equal to one of them, then \(\delta(x, y) + \delta(y, z) = \delta(x, z) \). In such a case we say that “\(y \) lies between \(x \) and \(z \)”.

For any \(x \in \mathbb{Z}^4 \), we reduce \(x \) by adding appropriate elements of \(L_k \) until the resulting vector lies within \(l^1 \)-distance \(k \) of \(0 \) or some other element of \(L_k \). The first stage is to reduce \(x \) to a vector whose coordinates all have absolute value at most \(a+1 \). If \(x \) has a coordinate with absolute value above \(a+1 \), then let \(v \) be one of the vectors \(\pm v_i (1 \leq i \leq 8) \) such that the coordinates of \(v \) have the same sign as the corresponding coordinates of \(x \). If a coordinate of \(x \) is 0 then either sign is allowed for \(v \) as long as the corresponding coordinate of \(v \) has absolute value \(\leq a+1 \). So in the case \(k \equiv 0 \pmod{2} \) if the \(e_3 \) coordinate of \(x \) is 0 then we avoid \(v_7 \) and take \(v_5 \) instead. Also if the \(e_4 \) coordinate of \(x \) is 0 (or both \(e_3 \) and \(e_4 \) coordinates are 0) then instead of \(v_5 \) we take \(v_1 \).

Now consider \(x' = x - v \). If a coordinate of \(x \) has absolute value \(s, 1 \leq s \leq a+1 \), then the corresponding coordinate of \(x' \) will have absolute value \(s' \leq a+1 \) because of the sign matching and the fact that the coordinates of \(v \) have absolute value \(\leq a+2 \). If a coordinate of \(x \) has absolute value \(s = 0 \), then as indicated above, the corresponding value of \(x' \) will have absolute value \(s' \leq a+1 \) because \(v \) is chosen such that the corresponding coordinate has absolute value \(\leq a+1 \). If a coordinate of \(x \) has absolute value \(s > a+1 \), then the corresponding coordinate of \(x' \) will be strictly smaller in absolute value. Therefore repeating this procedure will result in a vector whose coordinates all have absolute value at most \(a+1 \).
If the resulting vector \(x' \) lies between 0 and \(v \), where \(v = \pm v_i \) for some \(i \), then we have \(\delta(0, x') + \delta(x', v) = \delta(0, v) \). For \(k \equiv 0 \pmod{2} \) all of the vectors \(v \) satisfy \(\delta(0, v) = 4a + 1 \), and for \(k \equiv 1 \pmod{2} \) they all satisfy \(\delta(0, v) = 4a - 1 \). So in either case we have \(\delta(0, v) = 2k + 1 \). Since \(\delta(0, x') \) and \(\delta(x', v) \) are both non-negative integers, one of them must be at most \(k \), so that \(x' \in S_k + L_k \). Hence we also have \(x \in S_k'' + L_k \). For both cases \(k \equiv 0 \pmod{2} \) the exceptions need to be considered for each orthant in turn. We first consider all eight orthants for the case \(k \equiv 0 \pmod{2} \) and then the same for \(k \equiv 1 \pmod{2} \).

Orthant of \(v_1 \), \(k \equiv 0 \pmod{2} \)

Suppose that \(k \equiv 0 \pmod{2} \) and \(x \) lies within the orthant of \(v_1 \), but not between 0 and \(v_1 \). Then as \(v_1 = (-a - 1, a + 1, a, -a + 1) \), the third coordinate of \(x \) is equal to \(a + 1 \) or the fourth coordinate equals \(-a \) or \(-a - 1 \). We distinguish three cases.

Case 1: \(x = (-r, s, a + 1, -u) \) where \(0 \leq r, s \leq a + 1 \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_1 = (a + r - s, a - 1, a - 1 - u) \), which lies between 0 and \(-v_7\) unless \(r \leq 1 \) or \(s \leq 1 \). Let \(x'' = x' + v_7 = (2 - r, s - 2, -a - 1, 2a - u) \). If \(r \leq 1 \) and \(s \leq 1 \) then \(x'' \) lies between 0 and \(-v_1\) unless \(u = a \), in which case let \(x''' = x'' + v_1 = (1 - a - r - a - 1 + s, -1, a + 1 - u) \) which lies between 0 and \(-v_3\). If \(r \leq 1 \) and \(s \geq 2 \) then \(x'' \) lies between 0 and \(-v_3\). If \(r \geq 2 \) and \(s \leq 1 \) then \(x'' \) lies between 0 and \(-v_2\).

Case 2: \(x = (-r, s, a + 1, -u) \) where \(0 \leq r, s \leq a + 1 \) and \(0 \leq u \leq a - 1 \). Let \(x' = x - v_1 = (a + r - s, a - 1, a - 1 - u) \), which lies between 0 and \(-v_6\) unless \(r = 0 \) or \(s = 0 \). Let \(x'' = x' + v_6 = (1 - r, s - 1, -a, -u - 1) \). If \(r = 0 \) and \(s = 0 \) then \(x'' \) lies between 0 and \(-v_5\). If \(r = 0 \) and \(s \geq 1 \) then \(x'' \) lies between 0 and \(-v_4\). If \(r \geq 1 \) and \(s = 0 \) then \(x'' \) lies between 0 and \(-v_8\).

Case 3: \(x = (-r, s, t, -u) \) where \(0 \leq r, s \leq a + 1 \) and \(0 \leq t \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_1 = (a + r - s, a - 1, t - a, a - 1 - u) \), which lies between 0 and \(-v_5\) unless \(r = 0 \) or \(s = 0 \) or \(t = 0 \). If \(r = 0 \) and \(s = 0 \) and \(t = 0 \) then \(x' \) lies between 0 and \(-v_7\). Let \(x'' = x' + v_5 = (1 - r, s - 1, t - 1, 2a + 1 - u) \). If \(r = 0 \) and \(s \geq 1 \) and \(t \geq 1 \) then \(x'' \) lies between 0 and \(-v_8\). If \(r = 0 \) and \(s \geq 1 \) and \(t = 0 \) then \(x'' \) lies between 0 and \(-v_5\). If \(r \geq 1 \) and \(s = 0 \) and \(t = 0 \) then \(x'' \) lies between 0 and \(-v_4\). If \(r \geq 1 \) and \(s \geq 1 \) and \(t = 0 \) then \(x'' \) lies between 0 and \(-v_8\). If \(r \geq 1 \) and \(s = a + 1 \) and \(t = 0 \) then \(x'' \) lies between 0 and \(-v_4\).

This completes the cases for the orthant of \(v_1 \) for \(k \equiv 0 \pmod{2} \).
Orntant of v_2, $k \equiv 0 \pmod{2}$

Now suppose that x lies in the orthant of v_2 but not between 0 and v_2. Then the first coordinate of x is equal to a or $a+1$, or the fourth coordinate equals $-a-1$. We distinguish three cases.

Case 1: $x = (r, s, t, -a-1)$ where $0 \leq r \leq a + 1$ and $0 \leq s, t \leq a + 1$. Let $x' = x - v_2 = (r - a + 1, s - a - 1, t - a - 1, -1)$, which lies between 0 and $-v_3$ unless $s = 0$ or $t \leq 1$, in which case let $x'' = x' + v_5 = (r - 2a + 1, s - 1, t - 2, a + 1)$. If $s = 0$ and $t \leq 1$ then let $x''' = x + v_5 = (r - a, a, t + a - 1, 1)$ which lies between 0 and v_8. If $s = 0$ and $t \geq 2$ then let $x''' = x'' - v_8 = (r - 2a, 0, t - 1, -a)$ which lies between 0 and v_3. If $s \geq 1$ and $t \leq 1$ then x'' lies between 0 and v_7 unless $s = a + 1$, in which case let $x'' = x'' - v_7 = (r - a, 1, a + t, 0)$ which lies between 0 and v_2.

Case 2: $x = (r, s, t, -u)$ where $a \leq r \leq a + 1$, $0 \leq s, t \leq a + 1$ and $0 \leq u \leq a$. Let $x' = x - v_2 = (r - a + 1, s - a - 1, t - a - 1, a - u)$, which lies between 0 and $-v_1$ unless $t = 0$ or $u = 0$. If $t = 0$ and $u = 0$ then x lies between 0 and $-v_3$ unless $a \leq s \leq a + 1$. If $r = a + 1$, $a \leq s \leq a + 1$, $t = 0$ and $u = 0$ then let $x'' = x + v_3 = (r - a - 1, s - a + 1, t + a + 1, -u - a)$ which lies between 0 and v_2. If $a \leq r \leq a + 1$, $s = a + 1$, $t = 0$ and $u = 0$ then let $x'' = x - v_2 = (r - a + 1, s - a - 1, t - a - 1, -u + a)$ which lies between 0 and $-v_3$. If $r = a, s = a, t = 0$ and $u = 0$ then x lies between 0 and v_8. Now let $x''' = x' + v_1 = (r - 2a, s, t - 1, 1 - u)$. If $t = 0$ and $1 \leq u \leq a$ then x''' lies between 0 and v_6 unless $a = 0$. If $r = a + 1, s = a + 1, t = 0$ and $u = 0$ then let $x''' = x'' - v_6 = (r - a, s - a, t + a, a + 1 - u)$ which lies between 0 and v_8. If $1 \leq t \leq a + 1$ and $u = 0$ then x''' lies between 0 and v_5 unless $s = a + 1$ or $t = a + 1$, in which case let $x''' = x'' - v_5 = (r - a, s - a, t - a, -a - 1 - u)$. If $s = a + 1$ and $t = a + 1$ then let x'' lies between 0 and v_8. If $s = a + 1$ and $1 \leq t \leq a$ then let x'' lies between 0 and v_4. If $0 \leq s \leq a$ and $t = a + 1$ then x''' lies between 0 and v_7 unless $s = 0$, in which case x'' lies between 0 and v_4.

Case 3: $x = (r, s, t, -a - 1)$ where $0 \leq r \leq a - 1$ and $0 \leq s, t \leq a + 1$. Let $x' = x - v_2 = (r - a + 1, s - a - 1, t - a - 1, -1)$, which lies between 0 and $-v_5$ unless $s = 0$ or $t = 0$. If $s = 0$ then x lies between 0 and $-v_7$. If $t = 0$ then x lies between 0 and $-v_4$ unless $s = a + 1$, in which case let $x'' = x + v_4 = (r - a, 1, a, 0)$ which lies between 0 and v_1. This completes the cases for the orthant of v_2.

Orntant of v_3, $k \equiv 0 \pmod{2}$

Now suppose that x lies in the orthant of v_3 but not between 0 and v_3. Then the second coordinate of x is equal to $-a$ or $-a - 1$, or the fourth coordinate equals $-a - 1$. We distinguish three cases.

Case 1: $x = (-r, -s, t, -a - 1)$ where $0 \leq r, t \leq a + 1$ and $a \leq s \leq a + 1$. Let $x' = x - v_3 = (a + 1 - r, a - 1 - s, t - a - 1, -1)$, which lies between 0 and $-v_3$ unless $r = 0$ or $t \leq 1$, in which case let $x'' = x' + v_5 = (1 - r, 2a - 1 - s, t - 2, a + 1)$. If $r = 0$ and $t \geq 2$ then x'' which lies between 0 and v_8. If $r = 0$ and $t \leq 1$ then let $x''' = x + v_5 = (-a, a - s, a - 1 + t, 1)$ which lies between 0 and v_4. If $r \geq 1$ and $t \leq 1$ then x'' lies between 0 and v_7 unless $r = a + 1$, in which case let $x''' = x'' - v_7 = (-1, -a - s, a + t, 0)$ which lies between 0 and v_3.

Case 2: \(x = (-r, -s, t, -a - 1) \) where \(0 \leq r, t \leq a + 1 \) and \(0 \leq s \leq a - 1 \). Let \(x' = x - v_3 = (a + 1 - r, a - 1 - s, t - a - 1, -1) \), which lies between \(0 \) and \(-v_4 \) unless \(r = 0 \) or \(t = 0 \). Let \(x'' = x' + v_4 = (1 - r, -1 - s, t - 1, a) \). If \(r = 0 \) and \(t \geq 1 \) then \(x'' \) lies between \(0 \) and \(-v_6 \). If \(r \geq 1 \) and \(t = 0 \) then \(x'' \) lies between \(0 \) and \(-v_2 \) unless \(r = a + 1 \), in which case let \(x''' = x'' + v_2 = (-1, a - s, a, 0) \) which lies between \(0 \) and \(v_1 \). If \(r = 0 \) and \(t = 0 \), then let \(x''' = x'' + v_1 = (-a, a - s, a - 1, 1) \) which lies between \(0 \) and \(v_5 \).

Case 3: \(x = (-r, -s, t, -u) \) where \(0 \leq r, t \leq a + 1 \), \(a \leq s \leq a + 1 \) and \(0 \leq u \leq a \). Let \(x' = x - v_3 = (a + 1 - r, a - 1 - s, t - a - 1, a - u) \), which lies between \(0 \) and \(-v_1 \) unless \(t = 0 \) or \(u = 0 \). Let \(x'' = x + v_8 = (a - r, a - s, a + t, a + 1 - u) \). If \(t = 0 \) and \(u = 0 \) then \(x'' \) lies between \(0 \) and \(v_4 \) unless \(r \leq a - 1 \), in which case let \(x''' = x + v_2 = (a - 1 - r, a + 1 - s, a + 1 + t, -a - u) \) which lies between \(0 \) and \(v_2 \). If \(t = 0 \) and \(u \geq 1 \) then \(x'' \) lies between \(0 \) and \(-v_6 \) unless \(r = a + 1 \), in which case \(x'' \) lies between \(0 \) and \(v_4 \). Let \(x''' = x - v_4 = (a - r, a - s, t - a, -a - 1) \). If \(u \geq 1 \), \(u = 0 \) and \(r \leq a \) then \(x''' \) lies between \(0 \) and \(-v_5 \) unless \(t = a + 1 \). If \(x = a + 1, u = 0 \) and \(r \leq a \) then \(x''' \) lies between \(0 \) and \(-v_5 \) unless \(r = 0 \) in which case \(x'' \) lies between \(0 \) and \(v_6 \). If \(t = 1, u = 0 \) and \(r = a + 1 \) then \(x' \) lies between \(0 \) and \(-v_2 \).

This completes the cases for the orthant of \(v_3 \).

Orthant of \(v_4 \), \(k \equiv 0 \) (mod 2)

Now suppose \(x \) lies in the orthant of \(v_4 \) but not between \(0 \) and \(v_4 \). Then the first coordinate of \(x \) is equal to \(-a - 1\) or the second coordinate is equal to \(-a - 1\), or the third equals \(a + 1\). We distinguish seven cases.

Case 1: \(x = (-a - 1, -a - 1, a + 1, u) \) where \(0 \leq u \leq a + 1 \). Let \(x' = x - v_4 = (-1, -1, 1, u - a - 1) \), which lies between \(0 \) and \(v_4 \) if \(u = a + 1 \) and between \(0 \) and \(v_3 \) if \(u \leq a \).

Case 2: \(x = (-a - 1, -a - 1, t, u) \) where \(0 \leq t \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_4 = (-1, -1, t, u - a - 1) \), which lies between \(0 \) and \(v_8 \).

Case 3: \(x = (-a - 1, -s, a + 1, u) \) where \(0 \leq s \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_4 = (-1, -a - s, 1, u - a - 1) \), which lies between \(0 \) and \(v_1 \) unless \(u \geq a \), in which case \(x'' = x' - v_1 = (a, -s - 1, -a + 1, u - 2) \) which lies between \(0 \) and \(-v_1 \).

Case 4: \(x = (-r, -a - 1, a + 1, u) \) where \(0 \leq r \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_4 = (a - r, -1, 1, u - a - 1) \), which lies between \(0 \) and \(-v_7 \) unless \(r = 0 \), in which case \(x'' = x' + v_7 = (1, a - 2, -a - 1, u) \) which lies between \(0 \) and \(-v_3 \) unless \(u = a + 1 \), in which case \(x''' = x'' + v_3 = (a, -1, 0, 1) \) which lies between \(0 \) and \(v_4 \).

Case 5: \(x = (-r, -s, a + 1, u) \) where \(0 \leq r, s \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_4 = (a - r, -s, 1, u - a - 1) \), which lies between \(0 \) and \(v_2 \) unless \(r = 0 \) or \(u = 0 \) in which case \(x'' = x' = (1 - r, -s - 1, -a, u - 1) \). If \(r \geq 1 \) and \(u = 0 \) then \(x'' \) lies between \(0 \) and \(-v_8 \) unless \(s = a \), in which case \(x''' = x'' + v_8 = (a + 1 - r, -1, 0, a) \) which lies between \(0 \) and \(-v_6 \). If \(r = 0 \) then \(x'' \) lies between \(0 \) and \(v_1 \) unless \(u = 0 \) or \(u = a + 1 \). If \(r = 0 \) and \(u = 0 \), then let \(x''' = x'' + v_5 = (1, a - 1, -1, a + 1) \) which lies between \(0 \) and \(v_7 \) unless \(s = a \), in which case \(x''' = x'' + v_2 = (0, a, a, 1) \) which lies between \(0 \) and \(v_8 \). If \(r = 0 \) and \(u = a + 1 \), then let \(x''' = x'' + v_1 = (-a, a - s, 0, 1) \) which lies between \(0 \) and \(v_5 \).
Case 4: $x = (-r, -a - 1, t, u)$ where $0 \leq r, t \leq a$ and $0 \leq u \leq a + 1$. Let $x' = x - v_4 = (a - r, -1, t - a, u - a - 1)$, which lies between 0 and $-v_5$ unless $t = 0$, in which case let $x'' = x' + v_5 = (-r, a - 1, -1, u + 1)$ which lies between 0 and v_7 unless $r = a$ or $u = a + 1$. If $t = 0$ and $r = a$ then let $x''' = x'' - v_7 = (-1, 0, a + 1, u - a)$ which lies between 0 and v_3 unless $u = a + 1$. If $t = 0$ and $u = a + 1$ then let $x''' = x'' - v_7 = (a - 1 - r, 0, a + 1, 1)$ which lies between 0 and $-v_6$ unless $r = a$. If $t = 0, r = a$ and $u = a + 1$, then $x''' = (-1, 0, a + 1, 1)$. Let $x''' = x'' - v_4 = (a - 1, a, 1, -a)$ which lies between 0 and v_2.

Case 7: $x = (-a - 1, -s, t, u)$ where $0 \leq s, t \leq a$ and $0 \leq u \leq a + 1$. Let $x' = x - v_4 = (-1, a - s, t - a, u - a - 1)$, which lies between 0 and v_4 unless $u = 0$, in which case let $x'' = x' - v_6 = (a - 1, -s, t + 1, -1)$ which lies between 0 and $-v_7$ unless $s = a$, in which case let $x''' = x'' + v_7 = (0, -1, t - a - 1, a)$ which lies between 0 and $-v_2$.

This completes the cases for the orthant of v_4.

Orthant of v_3, $k \equiv 0 \pmod{2}$

Now suppose x lies in the orthant of v_3 but not between 0 and v_3. Then the first coordinate of x is equal to $-a - 1$ or the second coordinate is equal to $a + 1$, or the third equals a or $a + 1$. We distinguish seven cases.

Case 1: $x = (-a - 1, a + 1, t, u)$ where $a \leq t \leq a + 1$ and $0 \leq u \leq a + 1$. Let $x' = x - v_5 = (-1, 1, t - a + 1, u - a - 2)$, which lies between 0 and v_1 unless $u \leq 2$, in which case let $x'' = x' - v_1 = (a, -a, t - 2a + 1, u - 3)$ which lies between 0 and $-v_5$.

Case 2: $x = (-a - 1, a + 1, t, u)$ where $0 \leq t \leq a - 1$ and $0 \leq u \leq a + 1$. Let $x' = x - v_5 = (-1, 1, t - a + 1, u - a - 2)$, which lies between 0 and v_4 unless $u \leq 1$, in which case let $x'' = x' - v_6 = (a - 1, -a, t + 2, u - 2)$ which lies between 0 and $-v_7$.

Case 3: $x = (-a - 1, s, t, u)$ where $0 \leq s \leq a$, $a \leq t \leq a + 1$ and $0 \leq u \leq a + 1$. Let $x' = x - v_5 = (-1, s - a, t - a + 1, u - a - 2)$, which lies between 0 and v_3 unless $u = 0$ or $u \leq 1$, in which case let $x'' = x' - v_3 = (a, s - 1, t - 2a, u - 2)$. If $s = 0$ and $u \leq 1$ then x' lies between 0 and $-v_5$ unless $t = a$, in which case let $x''' = x'' + v_5 = (0, a - 1, -1, a + u)$ which lies between 0 and v_7. If $s = 0$ and $u \geq 2$ then $x''' = x'' + v_1 = (-1, a, t - a, u - a - 1)$ which lies between 0 and v_1. If $s \geq 1$ and $u \leq 1$ then x' lies between 0 and $-v_4$.

Case 4: $x = (-r, a + 1, t, u)$ where $0 \leq r \leq a$, $a \leq t \leq a + 1$ and $0 \leq u \leq a + 1$. Let $x' = x - v_5 = (a - r, 1, t - a + 1, u - a - 2)$, which lies between 0 and v_2 unless $r = 0$ or $u \geq 2$, in which case let $x'' = x' - v_2 = (1 - r, -a, t - 2a, u - 2)$. If $r = 0$ and $u \geq 2$ then x'' lies between 0 and $-v_1$. If $r = 0$ and $u \leq 1$ then x' lies between 0 and $-v_5$ unless $t = a$, in which case let $x''' = x'' + v_5 = (1 - a, 0, -1, a + u)$ which lies between 0 and v_7. If $r \geq 1$ and $u \leq 2$ then x'' lies between 0 and $-v_2$.

Case 5: $x = (-r, s, t, u)$ where $0 \leq r, s \leq a$, $a \leq t \leq a + 1$ and $0 \leq u \leq a + 1$. Let $x' = x - v_5 = (a - r, s - a, t - a + 1, u - a - 2)$, which lies between 0 and $-v_7$ unless $r = 0$ or $s = 0$ or $u = 0$. If $r = 0$ then x lies between 0 and v_8 unless $t = a + 1$, in which case let $x' = x - v_8 = (-a, s - a, 1, u - a - 1)$ which lies between 0 and v_3 unless $u = 0$. If $r = 0, t = a + 1$ and $u = 0$ then x lies between 0 and v_2. If $r \geq 1$ and $s = 0$ then x lies between 0 and v_4 unless $t = a + 1$, in which case let $x' = x - v_4 = (a - r, a, 1, u - a - 1)$ which lies between 0 and v_2 unless $u = 0$. If $r \geq 1, s = 0$ and $u = 0$, then let $x'' = x' - v_2 = (1 - r, -1, -a, -1)$ which lies between 0 and $-v_2$.

R. R. Lewis
and $-v_8$. If $r \geq 1, s \geq 1$ and $u = 0$, then x lies between 0 and v_1 unless $t = a + 1$, in which case let $x' = x - v_1 = (a + 1 - r, s - a - 1, 1, a - 1)$ which lies between 0 and $-v_7$.

Case 6: $x = (-r, a + 1, t, u)$ where $0 \leq r \leq a$, $0 \leq t \leq a - 1$ and $0 \leq u \leq a + 1$. Let $x' = x - v_5 = (a - r, 1, t - a + 1, u - a - 2)$, which lies between 0 and $-v_4$ unless $u = 0$ in which case x lies between 0 and v_1.

Case 7: $x = (-a - 1, s, t, u)$ where $0 \leq s \leq a$, $0 \leq t \leq a - 1$ and $0 \leq u \leq a + 1$. Let $x' = x - v_5 = (-1, s - a, t - a + 1, u - a - 2)$, which lies between 0 and $-v_8$ unless $u = 0$ in which case x lies between 0 and v_1.

This completes the cases for the orthant of v_5.

Orthant of v_6, $k \equiv 0 \pmod{2}$

Now suppose x lies in the orthant of v_6 but not between 0 and v_6. Then the first coordinate of x is equal to $-a - 1$ or the second coordinate is equal to $a + 1$, or the fourth equals $-a - 1$. We distinguish seven cases.

Case 1: $x = (-a - 1, a + 1, -t, -a - 1)$ where $0 \leq t \leq a + 1$. Let $x' = x - v_6 = (-1, 1, a + 1 - t, -a - 1)$, which lies between 0 and v_1 unless $t = 0$, in which case let $x'' = x' - v_1 = (a, -a, 1, a - 2)$ which lies between 0 and $-v_6$.

Case 2: $x = (-a - 1, a + 1, -t, -u)$ where $0 \leq t \leq a + 1$ and $0 \leq u \leq a$. Let $x' = x - v_6 = (-1, 1, a + 1 - t, a - u)$, which lies between 0 and v_5 unless $t \leq 1$, in which case let $x'' = x' - v_5 = (a - 1, 1 - a, 2 - t, -u - 2)$ which lies between 0 and $-v_7$ unless $u = a$. If $t = 1$ and $u = a$ then x' lies between 0 and v_1. If $t = 0$ and $u = a$ then let $x'' = x' - v_1 = (a, -a, 1, a + 1)$ and $x''' = x'' + v_6 = (0, 0, -a, 1)$ which lies between 0 and v_7.

Case 3: $x = (-a - 1, s, -t, -a - 1)$ where $0 \leq s \leq a$ and $0 \leq t \leq a + 1$. Let $x' = x - v_6 = (-1, s - a, a + 1 - t, -a - 1)$, which lies between 0 and v_3 unless $s = a$ in which case let $x'' = x' - v_3 = (a, -a, 1, a - 1)$ which lies between 0 and $-v_3$.

Case 4: $x = (-r, a + 1, -t, -a - 1)$ where $0 \leq r \leq a$ and $0 \leq t \leq a + 1$. Let $x' = x - v_6 = (a - r, 1, a + 1 - t, -a - 1)$, which lies between 0 and v_2 unless $r = 0$, in which case let $x'' = x' - v_2 = (1 - a, -t, -a - 1)$ which lies between 0 and $-v_1$ unless $t = a + 1$ in which case $x' = (a, 1, 0, -1)$ which lies between 0 and $-v_4$.

Case 5: $x = (-r, s, -t, -a - 1)$ where $0 \leq r, s \leq a$ and $0 \leq t \leq a + 1$. Let $x' = x - v_6 = (a - r, s - a, a + 1 - t, -a - 1)$, which lies between 0 and $-v_7$ unless $r = 0$ or $s = 0$, in which case let $x'' = x' + v_7 = (1 - r, s - 1, -t - 1, a)$. If $r = 0$ and $s \geq 1$ then x'' lies between 0 and $-v_3$ unless $t = a + 1$, in which case let $x''' = x'' + v_3 = (-a, s - a, -1, 0)$ which lies between 0 and v_6. If $r \geq 1$ and $s = 0$ then x'' lies between 0 and $-v_2$ unless $t = a + 1$, in which case let $x''' = x'' + v_2 = (a - r, a, 1, 0)$ which lies between 0 and $-v_4$. If $r = 0$ and $s = 0$ then x lies between 0 and v_8 unless $t = a + 1$, in which case let $x''' = x + v_8 = (a, a, -1, 0)$ which lies between 0 and $-v_4$.

Case 6: $x = (-r, a + 1, -t, -u)$ where $0 \leq r, u \leq a$ and $0 \leq t \leq a + 1$. Let $x' = x - v_6 = (a - r, 1, a + 1 - t, a - u)$, which lies between 0 and v_8 unless $t = 0$, in which case let $x = (-r, a + 1, 0, -u)$ which lies between 0 and v_1 unless $u = a$. If $t = 0$ and $u = a$ then let $x'' = x - v_1 = (a + 1 - r, 0, -a, -1)$ which lies between 0 and $-v_4$ unless $r = 0$ in
which case \(x = (0, a + 1, 0, -a) \) which lies between 0 and \(v_1 \).

Case 7: \(x = (-a - 1, s, -t, -u) \) where \(0 \leq s, u \leq a \) and \(0 \leq t \leq a + 1 \). Let \(x' = x - v_6 = (-1, s - a, a + 1 - t, a - u) \), which lies between 0 and \(v_4 \) unless \(t = 0 \) in which case \(x = (-a - 1, s, 0, -u) \) which lies between 0 and \(v_1 \) unless \(u = a \). If \(t = 0 \) and \(u = a \) then let \(x'' = x - v_1 = (0, s - a - 1, -a, -1) \) which lies between 0 and \(-v_8 \) unless \(s = 0 \) in which case let \(x''' = x'' + v_8 = (a, -1, 0, a) \) which lies between 0 and \(-v_6 \).

This completes the cases for the orthant of \(v_6 \).

Orthant of \(v_7 \), \(k \equiv 0 \pmod{2} \)

Now suppose \(x \) lies in the orthant of \(v_7 \) but not between 0 and \(v_7 \). Then the first coordinate of \(x \) is equal to \(-a\) or \(-a - 1\) or the second equals \(a \) or \(a + 1 \). We distinguish seven cases.

Case 1: \(x = (-r, s, -t, u) \) where \(a \leq r, s \leq a + 1, 2 \leq t \leq a + 1 \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_7 = (a - 1 - r, s - a + 1, a + 2 - t, u - a - 1) \), which lies between 0 and \(v_1 \) unless \(u \leq 1 \), in which case let \(x'' = x - v_6 = (a - r, s - a, a + 1 - t, a + u) \) which lies between 0 and \(v_5 \).

Case 2: \(x = (-a, a, -t, u) \) where \(0 \leq t \leq 1 \) and \(0 \leq u \leq a + 1 \). If \(u = 0 \) then \(x \) lies between 0 and \(v_6 \). If \(u \geq 1 \) then let \(x' = x - v_7 - v_3 = (a, a, 1 - t, u - 1) \), which lies between 0 and \(v_8 \).

Case 3: \(x = (-a - 1, a, -t, u) \) where \(0 \leq t \leq 1 \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_1 = (0, -1, -a - t, a + 1 + u) \). If \(u \leq 1 \) then \(x' \) lies between 0 and \(-v_2 \). If \(u \geq 2 \) then let \(x'' = x' + v_2 = (a - 1, a - 1 - t, u - 1) \), which lies between 0 and \(v_8 \).

Case 4: \(x = (-a, a + 1, -t, u) \) where \(0 \leq t \leq 1 \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_1 = (1, 0, -a - t, a - 1 + u) \). If \(u \leq 1 \) then \(x' \) lies between 0 and \(-v_3 \). If \(u \geq 2 \) then let \(x'' = x' + v_3 = (-a, -a + 1, 1 - t, u - 1) \), which lies between 0 and \(v_4 \).

Case 5: \(x = (-a - 1, a + 1, -t, u) \) where \(0 \leq t \leq 1 \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_1 = (0, 0, -a - t, a + 1 + u) \). If \(u \leq 1 \) then \(x' \) lies between 0 and \(v_7 \). If \(u \geq 2 \) then let \(x'' = x' - v_7 = (a - 1, -a + 1, 2 - t, u - 2) \), which lies between 0 and \(-v_6 \).

Case 6: \(x = (-r, s, -t, u) \) where \(0 \leq r \leq a - 1, a \leq s \leq a + 1 \) and \(0 \leq t, u \leq a + 1 \). Let \(x' = x - v_7 = (a - 1 - r, s - a + 1, a + 2 - t, u - a - 1) \), which lies between 0 and \(v_2 \) unless \(t = 0 \) or \(u = 0 \), in which case let \(x'' = x' - v_2 = (-r, s - 2a, 1 - t, u - 1) \). If \(t = 0 \) and \(u \geq 1 \) then \(x'' \) lies between 0 and \(v_4 \). If \(t \geq 1 \) and \(u = 0 \) then \(x'' = (r, s - 2a, 1 - t, -1) \) which lies between 0 and \(-v_8 \).

Case 7: \(x = (-r, s, -t, u) \) where \(a \leq r \leq a + 1, 0 \leq s \leq a - 1 \) and \(0 \leq t, u \leq a + 1 \). Let \(x' = x - v_7 = (a - 1 - r, s - a + 1, a + 2 - t, u - a - 1) \), which lies between 0 and \(v_3 \) unless \(t = 0 \) and \(u = 0 \) in which case let \(x'' = x' - v_3 = (2a - r, s, 1 - t, u - 1) \). If \(t = 0 \) and \(u = 0 \) then \(x \) lies between 0 and \(v_1 \). If \(t = 0 \) and \(u \geq 1 \) then \(x'' \) lies between 0 and \(v_8 \). If \(t \geq 1 \) and \(u = 0 \) then \(x'' \) lies between 0 and \(-v_4 \).

This completes the cases for the orthant of \(v_7 \).
Orthant of \(v_8, k \equiv 0 \pmod{2} \)

Finally suppose \(x \) lies in the orthant of \(v_8 \) but not between 0 and \(v_8 \). Then at least one of the first three coordinate of \(x \) is equal to \(a + 1 \). We distinguish seven cases.

Case 1: \(x = (a + 1, a + 1, a + 1, u) \) where \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (1, 1, 1, u - a - 1) \), which lies between 0 and \(v_2 \) unless \(u = 0 \), in which case let \(x'' = x' - v_2 = (-a + 2, -a, -a, -1) \) which lies between 0 and \(-v_8 \).

Case 2: \(x = (a + 1, a + 1, t, u) \) where \(0 \leq t \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (1, t - a, u - a - 1) \), which lies between 0 and \(v_4 \).

Case 3: \(x = (a + 1, s, a + 1, u) \) where \(0 \leq s \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (1, s - a, 1, u - a - 1) \), which lies between 0 and \(-v_7 \) unless \(s = 0 \), in which case let \(x'' = x' + v_7 = (-a + 2, -a - 1, u) \) which lies between 0 and \(-v_2 \) unless \(u = a + 1 \). If \(s = 0 \) and \(u = a + 1 \) then \(x' = (1, -a, 1, 0) \) which lies between 0 and \(-v_6 \).

Case 4: \(x = (r, a + 1, a + 1, u) \) where \(0 \leq r \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (r - a, 1, u - a - 1) \), which lies between 0 and \(v_1 \) unless \(u \leq 1 \), in which case let \(x'' = x' - v_1 = (r + 1, -a - 1, u - 2) \) which lies between 0 and \(-v_5 \) unless \(r = a \). If \(r = a \) and \(u \leq 1 \) then let \(x'' = x' + v_5 = (1, 0, u + a) \) which lies between 0 and \(v_8 \).

Case 5: \(x = (a + 1, s, t, u) \) where \(0 \leq s, t \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (1, s - a, 1, t - a - 1) \), which lies between 0 and \(v_5 \) unless \(t = 0 \), in which case let \(x'' = x' + v_5 = (-a + 1, s - 1, u + 1) \) which lies between 0 and \(v_7 \) unless \(s = a \) or \(u = a + 1 \). If \(s = a \) and \(t = 0 \) then \(x' = (1, 0, u - a - 1) \) which lies between 0 and \(-v_4 \). If \(t = 0 \) and \(u = a + 1 \) then \(x' = (1, s - a, u - a, 0) \) which lies between 0 and \(-v_1 \).

Case 6: \(x = (r, a + 1, t, u) \) where \(0 \leq r \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (r - a, 1, t - a - 1) \), which lies between 0 and \(v_6 \) unless \(u = 0 \), in which case \(x \) lies between 0 and \(v_2 \) unless \(r = a \). If \(r = a \) and \(u = 0 \) then let \(x'' = x' - v_2 = (1, 0, t - a - 1, a) \) which lies between 0 and \(-v_3 \).

Case 7: \(x = (r, s, a + 1, u) \) where \(0 \leq r, s \leq a \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (r - a, s - a, 1, u - a - 1) \), which lies between 0 and \(v_3 \) unless \(s = 0 \) or \(u = 0 \), in which case let \(x'' = x' - v_3 = (r + 1, s - 1, -a - 1) \). If \(s = 0 \) and \(u = 0 \) then \(x \) lies between 0 and \(-v_6 \). If \(s = 0 \) and \(u \geq 1 \) then \(x'' \) lies between 0 and \(v_6 \), in which case \(x' \) lies between 0 and \(v_4 \). If \(s \geq 1 \) and \(u = 0 \) then \(x \) lies between 0 and \(v_2 \) unless \(r = a \), in which case \(x' \) lies between 0 and \(-v_7 \).

This completes the cases for the orthant of \(v_8 \).

This also completes the proof of the theorem for any \(k \equiv 0 \pmod{2} \).

Now we consider the eight orthants \(v_1, \ldots, v_8 \) in turn for the case \(k \equiv 1 \pmod{2} \).

Orthant of \(v_1, k \equiv 1 \pmod{2} \)

First suppose that \(x \) lies within the orthant of \(v_1 \), but not between 0 and \(v_1 \). Then the first coordinate of \(x \) is equal to \(-a\) or \(-a - 1\), or the third coordinate equals \(-a\) or \(-a - 1\), or the fourth equals \(a + 1\). We distinguish seven cases.

Case 1: \(x = (-r, s, t, a + 1) \) where \(a \leq r, t \leq a + 1 \) and \(0 \leq s \leq a + 1 \). Let \(x' = x - v_1 = \ldots \)
(a - 1 - r, s - a - 1, a - 1 - t, 1), which lies between 0 and v₈ unless s ≤ 1 in which case let $x'' = x' - v₈ = (2a - 2 - r, s - 2, 2a - 1 - t, -a)$ which lies between 0 and $-v₁$.

Case 2: $x = (r, -s, -t, u)$ where $a ≤ r, t ≤ a + 1$ and $0 ≤ s ≤ a + 1$ and $0 ≤ u ≤ a$. Let $x' = x - v₁ = (a - 1 - r, s - a - 1, a - 1 - t, u - a)$, which lies between 0 and $v₅$ unless $u = 0$ or $u ≤ 1$, in which case let $x'' = x' - v₅ = (2a - 1 - r, s - 1, 2a - t, u - 2)$. If $s = 0$ and $u ≤ 1$ then x'' lies between 0 and $-v₁$, unless $t = a$, in which case let $x''' = x'' + v₁ = (a - r, a - 1, u + a - 2)$ which lies between 0 and $v₄$. If $s = 0$ and $u ≥ 2$ then x'' lies between 0 and $-v₇$. If $s ≥ 1$ and $u ≤ 1$ then x'' lies between 0 and $-v₈$ unless $s = a + 1$, in which case let $x''' = x'' + v₈ = (a - r, 1, a - t, a + u - 1)$ which lies between 0 and $v₁$.

Case 3: $x = (-r, s, -t, a + 1)$ where $a ≤ r ≤ a + 1, 0 ≤ s ≤ a + 1$ and $0 ≤ t ≤ a - 1$. Let $x' = x - v₁ = (a - 1 - r, s - a - 1, a - 1 - t, 1)$, which lies between 0 and $-v₃$ unless $s = 0$, in which case let $x'' = x' + v₂ = (2a - 1 - r, -1, -t, -a + 1)$ which lies between 0 and $-v₂$.

Case 4: $x = (-r, s, -t, a + 1)$ where $0 ≤ r ≤ a - 1, 0 ≤ s ≤ a + 1$ and $a ≤ t ≤ a + 1$. Let $x' = x - v₁ = (a - 1 - r, s - a - 1, a - 1 - t, 1)$, which lies between 0 and $-v₃$ unless $s ≤ 1$, in which case let $x'' = x' + v₃ = (-2 - r, s - 2, 2a - 2 - t, -a + 1)$ which lies between 0 and $-v₂$.

Case 5: $x = (-r, s, -t, a + 1)$ where $0 ≤ r, t ≤ a - 1$ and $0 ≤ s ≤ a + 1$. Let $x' = x - v₁ = (a - 1 - r, s - a - 1, a - 1 - t, 1)$, which lies between 0 and $-v₇$ unless $s = 0$, in which case let $x'' = x' + v₇ = (-r - 1, -1, -t - 1, -a + 2)$ which lies between 0 and $v₃$.

Case 6: $x = (-r, s, -t, u)$ where $0 ≤ r ≤ a - 1, 0 ≤ s ≤ a + 1, a ≤ t ≤ a + 1$ and $0 ≤ u ≤ a$. Let $x' = x - v₁ = (a - 1 - r, s - a - 1, a - 1 - t, u - a)$, which lies between 0 and $-v₄$ unless $s = 0$ or $u = 0$, in which case let $x'' = x' + v₄ = (-r - 1, s - 1, 2a - 1 - t, u - 1)$. If $s = 0$ and $u = 0$ then let $x''' = x'' + v₂ = (a - r, a, a - 1 - t, a - 2)$ which lies between 0 and $-v₁$. If $s = 0$ and $u ≥ 1$ then x'' lies between 0 and $v₆$. If $s ≥ 1$ and $u = 0$ then x'' lies between 0 and $v₃$ unless $s = a + 1$, in which case x' lies between 0 and $v₆$.

Case 7: $x = (-r, s, -t, u)$ where $a ≤ r ≤ a + 1, 0 ≤ s ≤ a + 1, 0 ≤ t ≤ a - 1$ and $0 ≤ u ≤ a$. Let $x' = x - v₁ = (a - 1 - r, s - a - 1, a - 1 - t, u - a)$, which lies between 0 and $-v₂$ unless $t = 0$ or $u = 0$, in which case let $x'' = x' + v₂ = (2a - r, s, -t + 1, u - 1)$. If $t = 0$ and $u = 0$ then let $x''' = x'' + v₃ = (a + 1 - r, s - a + 1, a + 1 - t, u + 1)$ which lies between 0 and $-v₃$ unless $a ≤ s ≤ a + 1$, in which case let $x''' = x - v₇ = (a - r, s - a - 1, a - 1 - t, a - 2)$ which lies between 0 and $v₄$. If $t = 0$ and $u ≥ 1$ then x'' lies between 0 and $-v₅$ unless $s = a + 1$ or $u = a$ in which case let $x'' = x'' + v₅ = (a - r, s - a, -a, -a + u + 1)$. If $s = a + 1$ then x' lies between 0 and $v₃$. If $1 ≤ s ≤ a$ and $u = a$ then x'' lies between 0 and $v₈$. If $s = 0$ and $u = a$ then x'' lies between 0 and $-v₇$. If $t ≥ 1$ and $u = 0$ then x'' lies between 0 and $v₆$ unless $s = a + 1$, in which case x' lies between 0 and $v₃$.

This completes the cases for the orthant of $v₁$.

Orthant of $v₂$, $k ≡ 1 \pmod{2}$

Now suppose that x lies in the orthant of $v₂$ but not between 0 and $v₂$. Then the third coordinate of x is equal to $-a + 1, -a$ or $-a - 1$, or the fourth coordinate equals a or $a + 1$.

R. R. Lewis

11
We distinguish three cases.

Case 1: \(x = (r, s, -t, u) \) where \(0 \leq r, s \leq a + 1, a - 1 \leq t \leq a + 1 \) and \(a \leq u \leq a + 1 \). Let \(x' = x - v_2 = (r - a - 1, s - a - 1, a - 2 - t, u - a + 1) \), which lies between 0 and \(v_8 \) unless \(r \leq 1 \) or \(s \leq 1 \), in which case let \(x'' = x' - v_8 = (r - 2s, s - 2a - 2 - t, u - 2a) \). If \(r \leq 1 \) and \(s \geq 2 \) then \(x'' \) lies between 0 and \(v_3 \). If \(r \geq 2 \) and \(s \leq 1 \) then \(x'' \) lies between 0 and \(-v_1 \). If \(r \leq 1 \) and \(s \leq 1 \) then \(x'' \) lies between 0 and \(-v_2 \) unless \(t = a - 1 \) or \(u = a \). Let \(x''' = x'' + v_2 = (r + a - 1, s + a - 1, a - t, u - a - 1) \). If \(r \leq 1 \) and \(s \leq 1 \) and \(u = a \) then \(x''' \) lies between 0 and \(v_6 \) unless \(t = a - 1 \), in which case let \(x''' = x'' - v_6 = (r - 1, s - 1, 2a - 1 - t, u - 1) \) which lies between 0 and \(v_4 \) if \(s = 1 \), and between 0 and \(-v_7 \) if \(r = 1 \). If \(r = 0 \) and \(s = 0 \) then \(x \) lies between 0 and \(v_1 \). If \(r \leq 1 \) and \(s \leq 1 \) and \(t = a - 1 \) and \(u = a + 1 \) then \(x'' \) lies between 0 and \(-v_3 \).

Case 2: \(x = (r, s, -t, u) \) where \(0 \leq r, s \leq a + 1, 0 \leq t \leq a - 2 \) and \(a \leq u \leq a + 1 \). Let \(x' = x - v_2 = (r - a - 1, s - a - 1, a - 2 - t, u - a + 1) \), which lies between 0 and \(-v_6 \) unless \(r = 0 \) or \(s = 0 \). Let \(x'' = x' + v_6 = (r - 1, s - 1, -t - 1, u - 2a + 1) \). If \(r = 0 \) and \(s = 0 \) then \(x'' \) lies between 0 and \(v_3 \) unless \(u = a \), in which case let \(x''' = x'' + v_5 = (r + a - 1, s + a - 1, a - t, u - a - 1) \) which lies between 0 and \(-v_8 \). If \(r = 0 \) and \(s \geq 1 \) then \(x''' \) lies between 0 and \(v_7 \). If \(r \geq 1 \) and \(s = 0 \) then \(x''' \) lies between 0 and \(-v_5 \).

Case 3: \(x = (r, s, -t, u) \) where \(0 \leq r, s \leq a + 1, a - 1 \leq t \leq a + 1 \) and \(0 \leq u \leq a - 1 \). Let \(x' = x - v_2 = (r - a - 1, s - a - 1, a - 2 - t, u - a + 1) \), which lies between 0 and \(v_5 \) unless \(r = 0 \) or \(s = 0 \) or \(u = 0 \), in which case let \(x'' = x' - v_5 = (r - 1, s - 1, 2a - 1 - t, u - 1) \). If \(r = 0 \) and \(s = 0 \) and \(u = 0 \) then \(x'' \) lies between 0 and \(-v_2 \) unless \(-a - 1 \leq t \leq a \), in which case let \(x''' = x'' + v_2 = (a + r, a + s, a + 1 - t, a - 2 + u) \) which lies between 0 and \(-v_5 \). If \(r = 0 \) and \(s \geq 1 \) and \(u = 0 \) then \(x'' \) lies between 0 and \(-v_6 \) unless \(t = a - 1 \), in which case let \(x''' = x'' + v_6 = (r + a - 1, s + a - 1, a - t, u - a - 1) \) which lies between 0 and \(-v_8 \). If \(r = 0 \) and \(s \geq 1 \) and \(u = 0 \) then \(x'' \) lies between 0 and \(v_3 \) unless \(s = a + 1 \) or \(t = a - 1 \), in which case let \(x''' = x' - v_3 = (r + a, s - a, a - t, u + a - 1) \). If \(s = a + 1 \) then \(x'' \) lies between 0 and \(v_2 \) unless \(t = a - 1 \). If \(t = a - 1 \) then \(x'' \) lies between 0 and \(-v_7 \) unless \(s = a + 1 \), in which case let \(x'' = x'' + v_5 = (r, s - 2a, -t - 1, u + 1) \) which lies between 0 and \(v_8 \). If \(r = 0 \) and \(s \geq 1 \) and \(u = 0 \) then \(x'' \) lies between 0 and \(v_4 \). If \(r \geq 1 \) and \(s = 0 \) and \(u = 0 \) then \(x'' \) lies between 0 and \(-v_1 \) unless \(r = a + 1 \) or \(t = a - 1 \), in which case let \(x''' = x'' + v_1 = (r - a, s - a, a - t, a + u - 1) \). If \(r = a + 1 \) and \(t \geq a \) then \(x'' \) lies between 0 and \(v_2 \). If \(r = a + 1 \) and \(t = a - 1 \) then \(x''' = x'' + v_5 = (r - 2a, s, -t - 1, u + 1) \) which lies between 0 and \(v_8 \). If \(1 \leq r \leq a \) and \(t = a - 1 \) then \(x'' \) lies between 0 and \(v_3 \). If \(1 \leq r \leq a

Orphant of \(v_3 \), \(k \equiv 1 \pmod{2} \)

Now suppose that \(x \) lies in the orphant of \(v_3 \) but not between 0 and \(v_3 \). Then the second coordinate of \(x \) is equal to \(a \) or \(a + 1 \), or the
fourth equals \(-a - 1\). We distinguish seven cases.

Case 1: \(x = (-r, s, t, -a - 1)\) where \(0 \leq r \leq a + 1\) and \(a \leq s, t \leq a + 1\). Let \(x' = x - v_3 = (a + 1 - r, s - a + 1, t - a + 1, -1)\), which lies between \(0\) and \(-v_8\) unless \(r \leq 1\), in which case let \(x'' = x' + v_8 = (2 - r, s - 2a + 2, t - 2a + 1, a)\) which lies between \(0\) and \(-v_3\).

Case 2: \(x = (-r, s, t, -u)\) where \(0 \leq r \leq a + 1\) and \(a \leq s, t \leq a + 1\) and \(0 \leq u \leq a\). Let \(x' = x - v_3 = (a + 1 - r, s - a + 1, t - a + 1, a - u)\), which lies between \(0\) and \(-v_5\) unless \(r = 0\) or \(u = 1\), in which case let \(x'' = x' + v_5 = (1 - r, s - 2a + 1, t - 2a, 2 - u)\). If \(r = 0\) and \(u \leq 1\) then \(x''\) lies between \(0\) and \(-v_3\) unless \(t = a\), in which case let \(x''' = x'' + v_3 = (-a - r, s - a, t - a - 1, 2 - a - u)\) which lies between \(0\) and \(v_7\). If \(r = 0\) and \(u \geq 2\) then \(x''\) lies between \(0\) and \(-v_4\). If \(r \geq 1\) and \(u \leq 1\) then \(x''\) lies between \(0\) and \(v_8\) unless \(r = a + 1\), in which case let \(x''' = x'' - v_8 = (a - r, s - a, t - a, a - 1 - u)\) which lies between \(0\) and \(v_3\).

Case 3: \(x = (-r, s, t, -a - 1)\) where \(0 \leq r \leq a + 1\) and \(a \leq s \leq a + 1\) and \(0 \leq t \leq a - 1\). Let \(x' = x - v_3 = (a + 1 - r, s - a + 1, t - a + 1, -1)\), which lies between \(0\) and \(v_6\) unless \(r = 0\), in which case let \(x'' = x' - v_6 = (1 - r, s - 2a + 1, t, a - 1)\) which lies between \(0\) and \(-v_7\).

Case 4: \(x = (-r, s, t, -a - 1)\) where \(0 \leq r \leq a + 1\) and \(0 \leq s \leq a - 1\) and \(a \leq t \leq a + 1\). Let \(x' = x - v_3 = (a + 1 - r, s - a + 1, t - a + 1, -1)\), which lies between \(0\) and \(-v_1\) unless \(r \leq 1\), in which case let \(x'' = x' + v_4 = (2 - r, s + 2, t - 2a + 2, a - 1)\) which lies between \(0\) and \(v_2\).

Case 5: \(x = (-r, s, t, -a - 1)\) where \(0 \leq r \leq a + 1\) and \(0 \leq s, t \leq a - 1\). Let \(x' = x - v_3 = (a + 1 - r, s - a + 1, t - a + 1, -1)\), which lies between \(0\) and \(-v_4\) unless \(r = 0\), in which case let \(x'' = x' + v_4 = (1 - r, s + 1, t + 1, a - 2)\) which lies between \(0\) and \(-v_5\).

Case 6: \(x = (-r, s, t, -u)\) where \(0 \leq r \leq a + 1\), \(0 \leq s \leq a - 1\), \(a \leq t \leq a + 1\) and \(0 \leq u \leq a\). Let \(x' = x - v_3 = (a + 1 - r, s - a + 1, t - a + 1, a - u)\), which lies between \(0\) and \(-v_7\) unless \(r = 0\) or \(u = 0\), in which case let \(x'' = x' + v_7 = (1 - r, s + 1, t - 2a + 1, 1 - u)\). If \(r = 0\) and \(u = 0\) then \(x''\) lies between \(0\) and \(v_2\) unless \(t = a\), in which case let \(x''' = x'' - v_2 = (-a - r, s - a, t - a - 1, 2 - a - u)\) which lies between \(0\) and \(v_5\). If \(r = 0\) and \(u \geq 1\) then \(x''\) lies between \(0\) and \(v_6\). If \(r \geq 1\) and \(u = 0\) then \(x''\) lies between \(0\) and \(v_1\) unless \(r = a + 1\), in which case let \(x''' = x'' - v_1 = (a - r, s - a, t - a, 1 - a - u)\) which lies between \(0\) and \(-v_2\).

Case 7: \(x = (-r, s, t, -u)\) where \(0 \leq r \leq a + 1\), \(a \leq s \leq a + 1\), \(0 \leq t \leq a - 1\) and \(0 \leq u \leq a\). Let \(x' = x - v_3 = (a + 1 - r, s - a + 1, t - a + 1, a - u)\), which lies between \(0\) and \(v_2\) unless \(t = 0\) or \(u = 0\), in which case let \(x'' = x' - v_2 = (-r, s - 2a, t - 1, 1 - u)\). If \(t = 0\) and \(u = 0\) then \(x''\) lies between \(0\) and \(v_8\) unless \(r \leq 1\), in which case let \(x''' = x'' - v_8 = (a - 1 - r, s - a - 1, t + a - 1, -a - u)\) which lies between \(0\) and \(-v_1\). If \(t = 0\) and \(u \geq 1\) then \(x''\) lies between \(0\) and \(v_5\) unless \(r = 0\) or \(u = a\), in which case let \(x''' = x'' - v_5 = (a - r, s - a, t + a + 1, a - u - 1)\). If \(r = 0\), \(t = 0\) and \(u = a\) then let \(x'' = x''' + v_8 = (1 - r, s - 2a + 1, t, 2a - u)\) which lies between \(0\) and \(-v_3\). If \(r = 0\), \(t = 0\) and \(1 \leq u \leq a - 1\) then \(x'''\) lies between \(0\) and \(-v_5\). If \(1 \leq r \leq a\), \(t = 0\) and \(u = a\) then \(x''\) lies between \(0\) and \(-v_8\). If \(r = a + 1\), \(t = 0\) and \(u = a\) then \(x''\) lies between \(0\) and \(-v_6\). If \(t \geq 1\) and \(u = 0\) then \(x''\) lies between \(0\) and \(-v_6\).

This completes the cases for the orthant of \(v_3\).
Orthant of v_4, $k \equiv 1 \text{ (mod 2)}$

Now suppose x lies in the orthant of v_4 but not between 0 and v_4. Then the first coordinate of x is equal to $-a-1$ or the second coordinate is equal to $a+1$, or the third equals $a+1$ or the fourth equals a or $a+1$. We distinguish fifteen cases.

Case 1: $x = (-a-1, a+1, a+1, u)$ where $a \leq u \leq a+1$. Let $x' = x - v_4 = (-1, 1, 1, u-a+1)$, which lies between 0 and v_4.

Case 2: $x = (-a-1, a+1, a+1, u)$ where $0 \leq u \leq a-1$. Let $x' = x - v_4 = (-1, 1, 1, u-a+1)$, which lies between 0 and v_4.

Case 3: $x = (-a-1, a+1, t, u)$ where $0 \leq t \leq a$ and $a \leq u \leq a+1$. Let $x' = x - v_4 = (-1, 1, t-a, u-a+1)$, which lies between 0 and v_4.

Case 4: $x = (-a-1, s, a+1, u)$ where $0 \leq s \leq a$ and $a \leq u \leq a+1$. Let $x' = x - v_4 = (-1, s-a, 1, u-a+1)$, which lies between 0 and $-v_2$.

Case 5: $x = (r, a+1, a+1, u)$ where $0 \leq r \leq a$ and $a \leq u \leq a+1$. Let $x' = x - v_4 = (a-r, 1, 1, u-a+1)$, which lies between 0 and $-v_5$.

Case 6: $x = (-r, s, a+1, u)$ where $0 \leq r, s \leq a$ and $a \leq u \leq a+1$. Let $x' = x - v_4 = (a-r, 1, s-a, u-a+1)$, which lies between 0 and $-v_7$.

Case 7: $x = (-r, a+1, t, u)$ where $0 \leq r, t \leq a$ and $a \leq u \leq a+1$. Let $x' = x - v_4 = (-a-1, t-a, u-a+1)$, which lies between 0 and v_2 unless $t \leq 1$, in which case let $x'' = x' - v_2 = (-r-1, -a, t-2, u)$ and $x''' = x'' - v_8 = (a-r-2, -1, a+t-2, u-a+1)$. x'' lies between 0 and $-v_1$ unless $a-1 \leq r \leq a$, in which case let $x''' = x'' + v_2 = 2(a-r-1, a, t, u-2a)$, which lies between 0 and $-v_5$ unless $u = a+1$. If $a-1 \leq r \leq a$, $t \leq 1$ and $u = a+1$, then let $x^v = x''' + v_5 = (a-r-1, 0, t-a-1, u-a)$ and $x^v = x^v - v_5 = (2a-r-2, a-1, t-1, u-2a-1)$ which lies between 0 and v_6.

Case 8: $x = (-a-1, s, t, u)$ where $0 \leq s, t \leq a$ and $a \leq u \leq a+1$. Let $x' = x - v_4 = (-1, s-a, t-a, u-a+1)$, which lies between 0 and v_8 unless $s = 0$, in which case let $x'' = x' - v_8 = (-a-2, s-1, t, u-2a)$ which lies between 0 and $-v_1$ unless $t = a$. If $s = 0$ and $t = a$ then let $x''' = x'' + v_1 = (-1, s+a, t-1, u-a)$, which lies between 0 and v_4.

Case 9: $x = (-r, a+1, a+1, u)$ where $0 \leq r \leq a$ and $0 \leq u \leq a-1$. Let $x' = x - v_4 = (a-r, 1, 1, u-a+1)$, which lies between 0 and $-v_8$ unless $r = 0$, in which case let $x'' = x' + v_8 = (1-r, 2-a, 1-a, u+2)$ which lies between 0 and v_8.

Case 10: $x = (-a-1, s, a+1, u)$ where $0 \leq s \leq a$ and $0 \leq u \leq a-1$. Let $x' = x - v_4 = (-1, s-a, 1, u-a+1)$, which lies between 0 and $-v_2$.

Case 11: $x = (-a-1, a+1, t, u)$ where $0 \leq t \leq a$ and $0 \leq u \leq a-1$. Let $x' = x - v_4 = (-1, 1, t-a, u-a+1)$, which lies between 0 and v_7.

Case 12: $x = (-r, s, t, u)$ where $0 \leq r, s, t \leq a$ and $a \leq u \leq a+1$. Let $x' = x - v_4 = (a-r, s-a, t-a, u-a+1)$, which lies between 0 and $-v_5$ unless $s = 0$ or $t = 0$. If $s = 0$ and $t = 0$ then let $x'' = x' + v_3 = (-1-r, s-1, t-1, u-2a+1)$ which lies between 0 and v_5 unless $r = a$ or $u = a$ in which case let $x''' = x'' - v_5 = (a-1-r, s+a-1, t+a, u-a-1)$.

If $r = a$ and $u = a$, then x lies between 0 and $-v_6$. If $r = a$ and $u = a+1$, then x''
lies between 0 and v_3. If $r \leq a - 1$ and $u = a$, then x''' lies between 0 and $-v_8$. If $s = 0$ and $1 \leq t \leq a$ then let x'' lies between 0 and $-v_2$ unless $t = a$, in which case let $x'' = x'' + v_2 = (a - r, a + s, t - a + 1, u - a)$ which lies between 0 and $-v_5$. If $1 \leq s \leq a$ and $t = 0$ then x'' lies between 0 and v_7 unless $r = a$, in which case let $x'' = x'' - v_7 = (a - r, s - a + 1, t + a - 1, u - a)$ which lies between 0 and $-v_6$.

Case 13: $x = (-r, s, a + 1, u)$ where $0 \leq r, s \leq a$ and $0 \leq u \leq a - 1$. Let $x' = x - v_4 = (a - r, s - a, 1, u - a + 1)$, which lies between 0 and $-v_6$ unless $r = 0$, in which case let $x'' = x' + v_1 = (1 - r, s + 1, a + 2, u + 1)$ which lies between 0 and v_2 unless $u = a - 1$. If $r = 0$ and $u = a - 1$ then let $x''' = x'' - v_2 = (-a - r, s - a, 0, u - a + 2)$ which lies between 0 and v_5.

Case 14: $x = (-r, a + 1, t, u)$ where $0 \leq r, t \leq a$ and $0 \leq u \leq a - 1$. Let $x' = x - v_4 = (a - r, 1, t - a, u - a + 1)$, which lies between 0 and v_6 unless $t = 0$, in which case let $x'' = x' - v_6 = (-r, 1 - a, t - 1, u + 1)$ which lies between 0 and v_8 unless $r = a$. If $r = a$ and $t = 0$ then let $x''' = x'' - v_8 = (a - 1 - r, 0, t + a - 1, u - a)$ which lies between 0 and v_3.

Case 15: $x = (-a - 1, s, t, u)$ where $0 \leq s, t \leq a$ and $0 \leq u \leq a - 1$. Let $x' = x - v_4 = (-1, -a, t - a, u - a + 1)$, which lies between 0 and v_5 unless $t = 0$ or $u = 0$ in which case let $x'' = x' - v_5 = (a - 1, s, t + 1, u - 1)$. If $t = 0$ and $u = 0$, then x'' lies between 0 and $-v_8$ unless $s = a$, in which case let $x''' = x'' + v_8 = (0, s - a + 1, t - a + 1, u + 1)$ which lies between 0 and v_1. If $t = 0$ and $1 \leq u \leq a - 1$, then x'' lies between 0 and $-v_5$. If $1 \leq t \leq a - 1$ and $u = 0$, then x'' lies between 0 and $-v_8$ unless $s = a$, in which case x''' lies between 0 and v_1. If $t = a$ and $u = 0$ then x''' lies between 0 and $-v_6$ unless $s = a$, in which case let $x''' = x'' - v_4 = (a, s - 2a + 1, t - 2a + 1, u + 1)$ which lies between 0 and $-v_3$.

This completes the cases for the orthant of v_4.

Orthant of v_5, $k \equiv 1 \pmod{2}$

Now suppose x lies in the orthant of v_5 but not between 0 and v_5. Then the first coordinate of x is equal to $-a - 1$ or the second coordinate is equal to $-a - 1$, or the fourth equals $-a + 1$, $-a + 1$. We distinguish seven cases.

Case 1: $x = (-a - 1, -a - 1, -t, -u)$ where $0 \leq t \leq a + 1$ and $a - 1 \leq u \leq a + 1$. Let $x' = x - v_5 = (-1, -1, a + 1 - t, a - 2 - u)$, which lies between 0 and $-v_2$ unless $t \leq 2$, in which case let $x'' = x' + v_2 = (a, a, 3 - t, 2a - 3 - u)$ which lies between 0 and $-v_5$.

Case 2: $x = (-a - 1, -a - 1, -t, -u)$ where $0 \leq t \leq a + 1$ and $0 \leq u \leq a - 2$. Let $x' = x - v_5 = (-1, -1, a + 1 - t, a - 2 - u)$, which lies between 0 and $-v_6$ unless $t \leq 1$, in which case let $x'' = x' + v_6 = (a, a, 1 - 2 - t, 2a - 2 - u)$ which lies between 0 and $-v_8$.

Case 3: $x = (-a - 1, -s, -t, -u)$ where $0 \leq s \leq a$, $0 \leq t \leq a + 1$ and $a - 1 \leq u \leq a + 1$. Let $x' = x - v_5 = (-1, a - s, a + 1 - t, a - 2 - u)$, which lies between 0 and v_3 unless $s = 0$ or $t \leq 1$, in which case let $x'' = x' - v_3 = (a, 1 - s, 2 - t, 2a - 2 - u)$. If $s = 0$ and $t \leq 1$ then x'' lies between 0 and $-v_5$ unless $u = a - 1$, in which case let $x''' = x'' + v_5 = (0, 1 - a - s, 1 - a - t, a - u)$ which lies between 0 and v_8. If $s = 0$ and $t \geq 2$ then x'' lies between 0 and v_2 unless $t = a + 1$, in which case let
\[x'' = x'' - v_2 = (-1, -a - s, a + t, a - 1 - u)\] which lies between \(0\) and \(v_8\). If \(1 \leq s \leq a\) and \(t \leq 1\) then \(x''\) lies between \(0\) and \(-v_7\).

Case 4: \(x = (-r, -a - 1, -t, -u)\) where \(0 \leq r \leq a\), \(0 \leq t \leq a + 1\) and \(a - 1 \leq u \leq a + 1\). Let \(x' = x - v_5 = (a - r, -1, a + 1 - t, a - 2 - u)\), which lies between \(0\) and \(-v_1\) unless \(r = 0\) or \(t \leq 1\), in which case let \(x'' = x' + v_1 = (1 - r, a, 2 - t, 2a - a - 2 - u)\). If \(r = 0\) and \(t \leq 1\) then \(x''\) lies between \(0\) and \(-v_5\) unless \(u = a - 1\), in which case let \(x''' = x'' + v_5 = (1 - a - r, 0, 1 - a - t, a - u)\) which lies between \(0\) and \(v_8\). If \(r = 0\) and \(2 \leq t \leq a + 1\) then \(x''\) lies between \(0\) and \(v_2\) unless \(t = a + 1\), in which case let \(x''' = x'' - v_2 = (-a - r, -1, a - t, a - 1 - u)\) which lies between \(0\) and \(v_5\). If \(r \geq 1\) and \(t \leq 1\) then \(x''\) lies between \(0\) and \(v_4\).

Case 5: \(x = (-r, -s, -t, -u)\) where \(0 \leq r, s \leq a\), \(0 \leq t \leq a + 1\) and \(a - 1 \leq u \leq a + 1\). Let \(x' = x - v_5 = (a - r, -s, a + 1 - t, a - 2 - u)\), which lies between \(0\) and \(-v_5\) unless \(r = 0\) or \(s = 0\) or \(t = 0\), in which case let \(x'' = x' + v_8 = (1 - r, 1 - s, 1 - t, 2a - a - 1 - u)\). If \(r = 0\), \(s = 0\) and \(t = 0\) then \(x\) lies between \(0\) and \(-v_8\). If \(r = 0\), \(s = 0\) and \(1 \leq t \leq a + 1\) then \(x''\) lies between \(0\) and \(v_2\) unless \(a \leq t \leq a + 1\) or \(u = a - 1\), in which case let \(x''' = x'' - v_2 = (-a - r, -s, a + 1 - t, a - u)\). If \(a \leq t \leq a + 1\) and \(a - 1 \leq u \leq a + 1\) then \(x''\) lies between \(0\) and \(v_3\). If \(1 \leq a - 1\) and \(u = a - 1\), then \(x''\) lies between \(0\) and \(-v_6\).

Case 6: \(x = (-r, -a - 1, -t, -u)\) where \(0 \leq r \leq a\), \(0 \leq t \leq a + 1\) and \(0 \leq u \leq a - 2\). Let \(x' = x - v_5 = (a - r, -1, a + 1 - t, a - 2 - u)\), which lies between \(0\) and \(-v_7\) unless \(t = 0\), in which case let \(x'' = x' + v_7 = (-r, a - 1 - t, -1 - u)\) which lies between \(0\) and \(v_3\).

Case 7: \(x = (-a - 1, -s, -t, -u)\) where \(0 \leq s \leq a\), \(0 \leq t \leq a + 1\) and \(0 \leq u \leq a - 2\). Let \(x' = x - v_5 = (-1, a - s, a + 1 - t, a - 2 - u)\), which lies between \(0\) and \(v_4\) unless \(t = 0\), in which case let \(x'' = x' - v_4 = (a, -s, 1 - t, -1 - u)\) which lies between \(0\) and \(-v_1\).

This completes the cases for the orthant of \(v_5\).

Orthant of \(v_6\), \(k \equiv 1 \mod 2\)

Now suppose \(x\) lies in the orthant of \(v_6\) but not between \(0\) and \(v_6\). Then the first coordinate of \(x\) is equal to \(a + 1\) or the second coordinate is equal to \(a + 1\), or the third equals \(-a\) or \(-a - 1\) or the fourth equals \(-a - 1\). We distinguish fifteen cases.

Case 1: \(x = (a + 1, a + 1, -t, -a - 1)\) where \(a \leq t \leq a + 1\). Let \(x' = x - v_6 = (1, 1, a - 1 - t, -1)\), which lies between \(0\) and \(v_6\).

Case 2: \(x = (a + 1, a + 1, -t, -u)\) where \(a \leq t \leq a + 1\) and \(0 \leq u \leq a\). Let \(x' = x - v_6 = (1, 1, a - 1 - t, a - u)\), which lies between \(0\) and \(v_2\) unless \(u = 0\), in which case let \(x'' = x' - v_2 = (-a, -a, 2a - 3 - t, 1 - u)\) which lies between \(0\) and \(-v_6\).

Case 3: \(x = (a + 1, a + 1, -t, -a - 1)\) where \(0 \leq t \leq a + 1\). Let \(x' = x - v_6 = (1, 1, a - 1 - t, -1)\), which lies between \(0\) and \(-v_8\).

Case 4: \(x = (a + 1, s, -t, -a - 1)\) where \(0 \leq s \leq a\) and \(a \leq t \leq a + 1\). Let \(x' = x - v_6 = (1, s - a, a - 1 - t, -1)\), which lies between \(0\) and \(-v_4\).

Case 5: \(x = (r, a + 1, -t, -a - 1)\) where \(0 \leq r \leq a\) and \(a \leq t \leq a + 1\). Let \(x' = x - v_6 = (1, r, -a - 1 - t, -1)\), which lies between \(0\) and \(-v_6\).
(r - a, 1, a - 1 - t, -1), which lies between 0 and \(v_7\).

Case 6: \(x = (r, s, -t, -a - 1)\) where \(0 \leq r, s \leq a\) and \(a \leq t \leq a + 1\). Let \(x' = x - v_0 = (r - a, s - a, a - 1 - t, -1)\), which lies between 0 and \(v_5\).

Case 7: \(x = (r, a + 1, -t, -a - 1)\) where \(0 \leq r \leq a\) and \(0 \leq t \leq a - 1\). Let \(x' = x - v_0 = (r - a, 1, a - 1 - t, -1)\), which lies between 0 and \(v_3\).

Case 8: \(x = (a + 1, s, -t, -a - 1)\) where \(0 \leq s \leq a\) and \(0 \leq t \leq a - 1\). Let \(x' = x - v_0 = (1, s - a, a - 1 - t, -1)\), which lies between 0 and \(-v_1\).

Case 9: \(x = (r, a + 1, -t, u)\) where \(0 \leq r, u \leq a\) and \(a \leq t \leq a + 1\). Let \(x' = x - v_0 = (r - a, 1, a - 1 - t, a - u)\), which lies between 0 and \(-v_3\) unless \(r = 0\), in which case let \(x'' = x' - v_1 = (r - 1, -a, 2a - 2 - t, -u)\) which lies between 0 and \(-v_2\) unless \(u = a\) in which case \(x'\) lies between 0 and \(v_7\).

Case 10: \(x = (a + 1, s, -t, -u)\) where \(0 \leq s, u \leq a\) and \(a \leq t \leq a + 1\). Let \(x' = x - v_0 = (1, s - a, a - 1 - t, a - u)\), which lies between 0 and \(-v_5\) unless \(s = 0\), in which case let \(x'' = x' + v_3 = (-a, s - 1, 2a - 2 - t, -u)\) which lies between 0 and \(-v_2\) unless \(u = a\). If \(s = 0\) and \(u = a\) then let \(x'' = x'' + v_2 = (1, s + a, a - t, a - 1 - u)\) which lies between 0 and \(v_2\).

Case 11: \(x = (a + 1, a + 1, -t, -u)\) where \(0 \leq t \leq a - 1\) and \(0 \leq u \leq a\). Let \(x' = x - v_0 = (1, 1, a - 1 - t, a - u)\), which lies between 0 and \(-v_5\) unless \(a - 1 \leq u \leq a\), in which case let \(x'' = x' + v_5 = (1, 1, a - 1 - t, 2 - u)\) which lies between 0 and \(v_5\).

Case 12: \(x = (r, s, -t, -a - 1)\) where \(0 \leq r, s \leq a\) and \(0 \leq t \leq a - 1\). Let \(x' = x - v_0 = (r - a, s - a, a - 1 - t, -1)\), which lies between 0 and \(-v_2\) unless \(t = 0\), in which case let \(x'' = x' + v_2 = (r + 1, s + 1, 1 - t, -a - 2)\) and \(x''' = x'' + v_5 = (r - a + 1, s - a, a - 1 - t, 0)\). Then \(x'''\) lies between 0 and \(v_8\).

Case 13: \(x = (r, s, -t, -u)\) where \(0 \leq r, s \leq a\) and \(a \leq t \leq a + 1\). Let \(x' = x - v_0 = (r - a, s - a, a - 1 - t, a - u)\), which lies between 0 and \(v_8\) unless \(r = 0\) or \(s = 0\), in which case let \(x'' = x' - v_8 = (r - 1, s - 1, 2a - 1 - t, -1 - u)\). If \(r = 0\) and \(s = 0\) then \(x''\) lies between 0 and \(-v_2\) unless \(t = a - 1\) in which case \(x'' = x' - v_1 = (a - a, a - t, a - u)\) which lies between 0 and \(-v_7\). If \(r = 0\) and \(1 \leq s \leq a\) then let \(x'' = x - v_7 = (r + a, s - a, a - t, -1 - u)\) which lies between 0 and \(-v_3\) unless \(u = a\) in which case \(x''\) lies between 0 and \(-v_4\). If \(1 \leq r \leq a\) and \(s = 0\) then \(x'' = x + v_4 = (r - a, s + a, a - t, -1 - u)\) which lies between 0 and \(v_1\) unless \(u = a\), in which case \(x''\) lies between 0 and \(v_7\).

Case 14: \(x = (r, a + 1, -t, -u)\) where \(0 \leq r, u \leq a\) and \(0 \leq t \leq a - 1\). Let \(x' = x - v_0 = (r - a, 1, a - 1 - t, a - u)\), which lies between 0 and \(v_4\) unless \(u = 0\), in which case let \(x'' = x' - v_4 = (r - 1, a, -1 - t, 1 - u)\) which lies between 0 and \(-v_3\) unless \(t = a - 1\). If \(t = a - 1\) and \(u = 0\) then \(x'' = x'' + v_3 = (r - a - 1, 0, a - 2 - t, 1 - a - u)\) which lies between 0 and \(v_7\) unless \(r = 0\), in which case \(x\) lies between 0 and \(v_7\).

Case 15: \(x = (a + 1, s, -t, -u)\) where \(0 \leq s, u \leq a\) and \(0 \leq t \leq a - 1\). Let \(x' = x - v_0 = (1, s - a, a - 1 - t, a - u)\), which lies between 0 and \(-v_7\) unless \(u = 0\), in which case let \(x'' = x' + v_7 = (1, a, s - 1, 1 - t, 1 - u)\) which lies between 0 and \(v_1\) unless \(t = a - 1\). If \(t = a - 1\) and \(u = 0\) then \(x'' = x'' + v_1 = (0, s - a - 1, a - 2 - t, 1 - a - u)\) which lies
between 0 and $-v_4$ unless $s = 0$, in which case x lies between 0 and $-v_3$.

This completes the cases for the orthant of v_6.

Orthant of v_7, $k \equiv 1 \pmod{2}$

Now suppose x lies in the orthant of v_7 but not between 0 and v_7. Then the first coordinate of x is equal to $-a - 1$ or the second is equal to $a + 1$ or the third equals $-a - 1$, or the fourth equals $-a$ or $-a - 1$. We distinguish fifteen cases.

Case 1: $x = (-a - 1, a + 1, -a - 1, -u)$ where $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-1, 1, 1, a - 1 - u)$, which lies between 0 and v_7.

Case 2: $x = (-a - 1, a + 1, -a - 1, -u)$ where $0 \leq u \leq a - 1$. Let $x' = x - v_7 = (-1, 1, 1, a - 1 - u)$, which lies between 0 and v_1.

Case 3: $x = (-a - 1, a + 1, -t, -u)$ where $0 \leq t \leq a$ and $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-1, 1, a - t, a - 1 - u)$, which lies between 0 and v_3 unless $t = 0$, in which case let $x'' = x' - v_3 = (a, 2a - 1, 2a - 1 - u)$, which lies between 0 and $-v_7$.

Case 4: $x = (-a - 1, s, -a - 1, -u)$ where $0 \leq s \leq a$ and $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-1, s - a, -1, a - 1 - u)$, which lies between 0 and v_5.

Case 5: $x = (-r, a + 1, -a - 1, -u)$ where $0 \leq r \leq a$ and $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-a - r, 1, a - 1, -u)$, which lies between 0 and $-v_4$.

Case 6: $x = (-r, s, -a - 1, -u)$ where $0 \leq r, s \leq a$ and $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-a - r, s - a, -1, a - 1 - u)$, which lies between 0 and $-v_4$.

Case 7: $x = (-r, a + 1, -t, -u)$ where $0 \leq r, t \leq a$ and $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-a - r, 1, a - t, a - 1 - u)$ which lies between 0 and $-v_7$.

Case 8: $x = (-a - 1, s, -a - 1, -u)$ where $0 \leq s, t \leq a$ and $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-1, s - a, -t, a - 1 - u)$ lies between 0 and $-v_2$ unless $t \leq 1$, in which case let $x'' = x' + v_2 = (a, s + 1, 2a - t, 2a - 2 - u)$ lies between 0 and v_5 unless $s = 0$. If $s = a$ and $t \leq 1$ then let $x''' = x'' + v_5 = (0, s - a + 1, -a - 1, -t, a - u)$ which lies between 0 and v_7.

Case 9: $x = (-r, a + 1, -a - 1, -u)$ where $0 \leq r \leq a$ and $0 \leq u \leq a - 1$. Let $x' = x - v_7 = (-r, a - 1, a - 1, a - 1 - u)$, which lies between 0 and v_2.

Case 10: $x = (-a - 1, s, -a - 1, -u)$ where $0 \leq s \leq a$ and $0 \leq u \leq a - 1$. Let $x' = x - v_7 = (-1, s - a, -t, a - 1 - u)$ lies between 0 and v_3 unless $s = 0$, in which case let $x'' = x' - v_3 = (a, 2a - 1, 2a - 2 - u)$ lies between 0 and v_1 unless $u = a - 1$. If $s = a$ and $u = a - 1$ then let $x''' = x'' + v_1 = (-1, s + a, a - 2 - u)$ which lies between 0 and v_7.

Case 11: $x = (-a - 1, a + 1, -t, -u)$ where $0 \leq t \leq a$ and $0 \leq u \leq a - 1$. Let $x' = x - v_7 = (-1, a - t, a - 1 - u)$, which lies between 0 and v_4.

Case 12: $x = (-r, s, -a - 1, -u)$ where $0 \leq r, s \leq a$ and $a \leq u \leq a + 1$. Let $x' = x - v_7 = (-a - r, s - a, -t, a - 1 - u)$ lies between 0 and $-v_1$ unless $r = 0$ or $t = 0$, in which case let
\[x'' = x' + v_1 = (1-r, s+1, 1-t, 2a-1-u). \]

If \(r = 0 \) and \(t = 0 \) then \(x'' \) lies between 0 and \(-v_5\) unless \(s = a \) or \(u = a \), in which case let \(x''' = x'' + v_5 = (1-a-r, s-a+1, -a-t, a+1-u) \).

If \(u = a \) then \(x \) lies between 0 and \(v_6 \). If \(s = a \) and \(u = a+1 \) then \(x'' \) lies between 0 and \(v_7 \). If \(r = 0 \) and \(1 \leq t \leq a \) then \(x'' \) lies between 0 and \(v_2 \) unless \(t = a \), in which case \(x' \) lies between 0 and \(-v_4 \). If \(1 \leq r \leq a \) and \(t = 0 \) then \(x'' \) lies between 0 and \(v_4 \) unless \(s = a \), in which case \(x' \) lies between 0 and \(-v_5 \).

Case 13: \(x = (-r, s, -a - 1, -u) \) where \(0 \leq r, s \leq a \) and \(0 \leq u \leq a - 1 \). Let \(x' = x - v_7 = (a-r, s-a, -1, a-1-u) \) lies between 0 and \(-v_3 \) unless \(s = 0 \), in which case let \(x'' = x' + v_3 = (1-r, s-1, a-2, -1-u) \) which lies between 0 and \(-v_2 \) unless \(u = a-1 \). If \(s = 0 \) and \(u = a-1 \) then let \(x''' = x'' + v_2 = (a-r, a+s, 0, a-2-u) \) which lies between 0 and \(v_6 \).

Case 14: \(x = (-r, a+1, -t, -u) \) where \(0 \leq r, t \leq a \) and \(0 \leq u \leq a - 1 \). Let \(x' = x - v_7 = (a-r, 1-a-t, a-1-u) \) which lies between 0 and \(-v_5 \) unless \(u = 0 \), in which case let \(x'' = x' + v_5 = (1-r, a-1, -t-1, 1-u) \) which lies between 0 and \(v_8 \) unless \(r = a \) or \(t = a \). If \(r = a \) and \(u = 0 \) then \(x' \) lies between 0 and \(v_4 \). If \(0 \leq r \leq a-1 \), \(t = a \) and \(u = 0 \) then let \(x'' = x'' - v_8 = (a-1-r, 0, a-1-t, -a-u) \) which lies between 0 and \(v_6 \).

Case 15: \(x = (-a-1, s, -t, -u) \) where \(0 \leq s, t \leq a \) and \(0 \leq u \leq a - 1 \). Let \(x' = x - v_7 = (-1, s-a, a-t, a-1-u) \) which lies between 0 and \(-v_6 \) unless \(t = 0 \), in which case let \(x'' = x' + v_6 = (a-1, s, 1-t, -1-u) \) which lies between 0 and \(-v_8 \) unless \(s = a \). If \(s = a \) and \(t = 0 \) then let \(x''' = x'' + v_8 = (0, s-a+1, 1-a-t, a-u) \) which lies between 0 and \(v_1 \).

This completes the cases for the orphant of \(v_7 \).

Orphant of \(v_8 \), \(k \equiv 1 \pmod{2} \)

Finally suppose \(x \) lies in the orphant of \(v_8 \) but not between 0 and \(v_8 \). Then the first coordinate of \(x \) is equal to \(-a \) or \(-a-1 \), or the second is equal to \(-a \) or \(-a-1 \), or the third is equal to \(-a-1 \). We distinguish seven cases.

Case 1: \(x = (-r, -s, -a-1, u) \) where \(a \leq r, s \leq a+1 \) and \(0 \leq u \leq a+1 \). Let \(x' = x - v_8 = (a-1-r, a-1-s, 0, a-u-1) \), which lies between 0 and \(-v_5 \) unless \(u \leq 2 \), in which case let \(x'' = x' + v_5 = (2a-1-r, 2a-1-s, a, u-3) \) which lies between 0 and \(-v_8 \).

Case 2: \(x = (-r, -s, -t, u) \) where \(a \leq r, s \leq a+1, 0 \leq t \leq a \) and \(0 \leq u \leq a+1 \).

Let \(x' = x - v_8 = (a-1-r, a-1-s, a-t, u-a-1) \), which lies between 0 and \(-v_2 \) unless \(t \leq 1 \) or \(u \leq 1 \), in which case let \(x'' = x' + v_2 = (2a-r, 2a-s, 2-t, u-t) \). If \(t \leq 1 \) and \(u \leq 1 \) then \(x'' \) lies between 0 and \(-v_8 \) unless \(r = a \) or \(s = a \), in which case let \(x''' = x'' + v_8 = (2a-1-r, 2a-1-s, 2-a-t, u+a-1) \). If \(t \leq 1 \), \(u \leq 1 \), \(r = a \) and \(s = a \) then \(x''' \) lies between 0 and \(v_2 \) unless \(t = 1 \) or \(u = 1 \). If \(r = a \), \(s = a \), \(t = 1 \) and \(u \leq 1 \) then let \(x''' = x - v_5 = (a-r, a-s, a+1-t, a+2) \) which lies between 0 and \(v_4 \).

If \(r = a \), \(s = a \), \(t = 0 \) and \(u = 1 \) then \(x \) lies between 0 and \(-v_6 \). If \(t \leq 1 \), \(u \leq 1 \), \(r = a \) and \(s = a+1 \) then \(x''' \) lies between 0 and \(-v_3 \). If \(t \leq 1 \), \(u \leq 1 \), \(r = a+1 \) and \(s = a \) then \(x''' \) lies between 0 and \(v_1 \). If \(t \leq 1 \) and \(2 \leq u \leq a+1 \) then \(x''' \) lies between 0 and \(v_5 \) unless \(u = a+1 \), in which case let \(x''' = x'' + v_5 = (a-r, a-s, 1-a-t, u-a) \) which lies between 0 and \(v_8 \). If \(2 \leq t \leq a+1 \), and \(u \leq 1 \) then \(x'' \) lies between 0 and \(v_6 \).
Case 3: \(x = (-r, -s, -a - 1, u) \) where \(a \leq r \leq a + 1, 0 \leq s \leq a - 1 \) and \(0 \leq u \leq a + 1 \).

Let \(x' = x - v_8 = (a - 1 - r, a - 1 - s, -1, u - a - 1) \), which lies between \(0 \) and \(v_7 \) unless \(u \leq 1 \), in which case let \(x'' = x' - v_7 = (2a - 1 - r, -1 - s, a - 1, u - 2) \) which lies between \(0 \) and \(-v_1 \).

Case 4: \(x = (-r, -s, -a - 1, u) \) where \(0 \leq r \leq a - 1, a \leq s \leq a + 1 \) and \(0 \leq u \leq a + 1 \).

Let \(x' = x - v_8 = (a - 1 - r, a - 1 - s, -1, u - a - 1) \), which lies between \(0 \) and \(-v_4 \) unless \(u \leq 1 \), in which case let \(x'' = x' + v_4 = (-1 - r, 2a - 1 - s, a - 1, u - 2) \) which lies between \(0 \) and \(v_3 \).

Case 5: \(x = (-r, -s, -a - 1, u) \) where \(0 \leq r, s \leq a - 1 \) and \(0 \leq u \leq a + 1 \). Let \(x' = x - v_8 = (a - 1 - r, a - 1 - s, -1, u - a - 1) \), which lies between \(0 \) and \(v_6 \) unless \(u = 0 \), in which case \(x \) lies between \(0 \) and \(v_5 \).

Case 6: \(x = (-r, -s, -s, -a - 1, u) \) where \(0 \leq r \leq a - 1, a \leq s \leq a + 1, 0 \leq t \leq a \) and \(0 \leq u \leq a + 1 \).

Let \(x' = x - v_8 = (a - 1 - r, a - 1 - s, -a - t, u - a - 1) \), which lies between \(0 \) and \(-v_1 \) unless \(t = 0 \) or \(u = 0 \), in which case let \(x'' = x' + v_1 = (-r, 2a - 2 - s, 1 - t, u - 1) \). If \(t = 0 \) and \(u = 0 \) then \(x \) lies between \(0 \) and \(-v_2 \). If \(t = 0 \) and \(1 \leq u \leq a + 1 \) then \(x'' \) lies between \(0 \) and \(v_4 \) unless \(u = a + 1 \), in which case let \(x'' = x'' - v_4 = (a - r, a - 2 - s, 1 - a - t, u - a) \) which lies between \(0 \) and \(-v_3 \). If \(1 \leq t \leq a \) and \(u = 0 \) then \(x'' \) lies between \(0 \) and \(v_7 \).

Case 7: \(x = (-r, -s, -s, -t, u) \) where \(a \leq r \leq a + 1, 0 \leq s \leq a - 1, 0 \leq t \leq a \) and \(0 \leq u \leq a + 1 \).

Let \(x' = x - v_8 = (a - 1 - r, a - 1 - s, -a - t, u - a - 1) \), which lies between \(0 \) and \(v_3 \) unless \(t = 0 \) or \(u = 0 \), in which case let \(x'' = x' - v_3 = (2a - r, -s, 1 - t, u - 1) \). If \(t = 0 \) and \(u = 0 \) then \(x \) lies between \(0 \) and \(-v_2 \). If \(t = 0 \) and \(1 \leq u \leq a + 1 \) then \(x'' \) lies between \(0 \) and \(-v_7 \) unless \(u = a + 1 \), in which case let \(x'' = x'' + v_7 = (a - r, a - s, 1 - a - t, u - a) \) which lies between \(0 \) and \(v_1 \). If \(1 \leq t \leq a \) and \(u = 0 \) then \(x'' \) lies between \(0 \) and \(-v_4 \).

This completes the cases for the orthant of \(v_8 \).

This also completes the proof of the theorem for any \(k \equiv 1 \pmod{2} \), and therefore for all \(k \geq 2 \).

\[\blacksquare \]

References
