The Open UniversitySkip to content
 

A Hybrid Similarity Measure Framework for Multimodal Medical Image Registration

Reel, Parminder (2016). A Hybrid Similarity Measure Framework for Multimodal Medical Image Registration. PhD thesis The Open University.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (25MB) | Preview
Google Scholar: Look up in Google Scholar

Abstract

Medical imaging is widely used today to facilitate both disease diagnosis and treatment planning practice, with a key prerequisite being the systematic process of medical image registration (MIR) to align either mono or multimodal images of different anatomical parts of the human body. MIR utilises a similarity measure (SM) to quantify the level of spatial alignment and is particularly demanding due to the presence of inherent modality characteristics like intensity non-uniformities (INU) in magnetic resonance images and large homogeneous non-vascular regions in retinal images. While various intensity and feature-based SMs exist for MIR, mutual information (MI) has become established because of its computational efficiency and ability to register multimodal images. It is however, very sensitive to interpolation artefacts in the presence of INU with noise and can be compromised when overlapping areas are small. Recently MI-based hybrid variants which combine regional features with intensity have emerged, though these incur high dimensionality and large computational overheads.

To address these challenges and secure accurate, efficient and robust registration of images containing high INU, noise and large homogeneous regions, this thesis presents a new hybrid SM framework for 2D multimodal rigid MIR. The framework consistently provides superior quantitative and qualitative performance, while offering a uniquely flexible design trade-off between registration accuracy and computational time. It makes three significant technical contributions to the field: i) An expectation maximisation-based principal component analysis with mutual information (EMPCA-MI) framework incorporating neighbourhood feature information; ii) Two innovative enhancements to reduce information redundancy and improve MI computational efficiency; and iii) an adaptive algorithm to select the most significant principal components for feature selection.

The thesis findings conclusively confirm the hybrid SM framework offers an accurate and robust 2D registration solution for challenging multimodal medical imaging datasets, while its inherent flexibility means it can also be extended to the 3D registration domain.

Item Type: Thesis (PhD)
Copyright Holders: 2016 Parminder Reel
Keywords: diagnostic imaging; image analysis; image registration; imaging systems in medicine
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
Item ID: 47620
Depositing User: Parminder Reel
Date Deposited: 07 Nov 2016 14:21
Last Modified: 07 Dec 2018 22:53
URI: http://oro.open.ac.uk/id/eprint/47620
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU