The Open UniversitySkip to content
 

Field Measurements of Terrestrial and Martian Dust Devils

Murphy, Jim; Steakley, Kathryn; Balme, Matt; Deprez, Gregoire; Esposito, Francesca; Kahanpää, Henrik; Lemmon, Mark; Lorenz, Ralph; Murdoch, Naomi; Neakrase, Lynn; Patel, Manish and Whelley, Patrick (2016). Field Measurements of Terrestrial and Martian Dust Devils. Space Science Reviews, 203(1) pp. 39–87.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1007/s11214-016-0283-y
Google Scholar: Look up in Google Scholar

Abstract

Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types.

Item Type: Journal Item
Copyright Holders: 2016 Springer
ISSN: 1572-9672
Project Funding Details:
Funded Project NameProject IDFunding Body
Support for Science Co-I's on the ExoMars Trace Gas Orbiter Instruments. (SM-10-074-MP)ST/I003061/1STFC (Science & Technology Facilities Council)
Understanding Planet Mars With Advanced Remote-sensing Datasets and Synergistic studies633127EC (European Commission): FP (inc.Horizon2020 & ERC schemes)
Keywords: dust devils
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 47498
Depositing User: Manish Patel
Date Deposited: 03 Oct 2016 15:31
Last Modified: 01 May 2019 15:01
URI: http://oro.open.ac.uk/id/eprint/47498
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU