The Open UniversitySkip to content

PLASIM–GENIE v1.0: a new intermediate complexity AOGCM

Holden, Philip B.; Edwards, Neil R.; Fraedrich, Klaus; Kirk, Edilbert; Lunkeit, Frank and Zhu, Xiuhua (2016). PLASIM–GENIE v1.0: a new intermediate complexity AOGCM. Geoscientific Model Development, 9 pp. 3347–3361.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (4MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


We describe the development, tuning and climate of Planet Simulator (PLASIM)–Grid-ENabled Integrated Earth system model (GENIE), a new intermediate complexity Atmosphere–Ocean General Circulation Model (AOGCM), built by coupling the Planet Simulator to the ocean, sea-ice and land-surface components of the GENIE Earth system model. PLASIM–GENIE supersedes GENIE-2, a coupling of GENIE to the Reading Intermediate General Circulation Model (IGCM). The primitive-equation atmosphere includes chaotic, three-dimensional (3-D) motion and interactive radiation and clouds, and dominates the computational load compared to the relatively simpler frictional-geostrophic ocean, which neglects momentum advection. The model is most appropriate for long-timescale or large ensemble studies where numerical efficiency is prioritised, but lack of data necessitates an internally consistent, coupled calculation of both oceanic and atmospheric fields. A 1000-year simulation with PLASIM–GENIE requires approximately 2 weeks on a single node of a 2.1 GHz AMD 6172 CPU. We demonstrate the tractability of PLASIM–GENIE ensembles by deriving a subjective tuning of the model with a 50- member ensemble of 1000-year simulations. The simulated climate is presented considering (i) global fields of seasonal surface air temperature, precipitation, wind, solar and thermal radiation, with comparisons to reanalysis data; (ii) vegetation carbon, soil moisture and aridity index; and (iii) sea surface temperature, salinity and ocean circulation. Considering its resolution, PLASIM–GENIE reproduces the main features of the climate system well and demonstrates usefulness for a wide range of applications.

Item Type: Journal Item
Copyright Holders: 2016 The Authors
ISSN: 1991-962X
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Health and Wellbeing PRA (Priority Research Area)
International Development & Inclusive Innovation
Item ID: 47406
Depositing User: Philip Holden
Date Deposited: 23 Sep 2016 08:32
Last Modified: 31 May 2019 23:19
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU