Inhibition of N-linked Protein Deglycosylation Stimulates Autophagy

Conference Item

How to cite:

Needs, Sarah; Alonzi, Dominic; Bootman, Martin D. and Allman, Sarah (2016). Inhibition of N-linked Protein Deglycosylation Stimulates Autophagy. In: Frankfurt Conference on Ubiquitin and Autophagy "Quality control in Life Processes", 04 – 07 July 2016, Goethe University Hospital, Frankfurt am Main, Germany.

For guidance on citations see FAQs.

© [not recorded]
Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Inhibition of N-linked Protein Deglycosylation Stimulates Autophagy

Sarah Needs1, Dominic Alonzi2, Martin D. Bootman1, Sarah Allman1

1Department of Life, Health and Chemical Sciences, The Open University; 2Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford

Glycosylation is the process by which sugars are added to biological molecules such as proteins. It regulates a myriad of biochemical processes, such as protein folding, adhesion, targeting and recognition events. Conditions resulting from in-born defects of glycosylation manifest with wide-ranging pathologies impacting nearly every organ system and result in severe multi-system diseases. These disorders are challenging to diagnose and difficult to map onto the clinical presentations, as a single defect in a sugar processing pathway may result in complex and varied downstream effects [1].

Protein folding and degradation

In a healthy cell, N-glycanase removes N-linked glycans from misfolded proteins prior to proteosomal degradation (figure 1).

NGU1 disorder is a rare congenital disease caused by mutations in the gene that encodes N-glycanase resulting in:

- Loss/reduction of N-glycanase activity
- Build up of misfolded proteins which aggregate in the cell [1,2].

If N-glycanase is inhibited, autophagy is stimulated to compensate for the accumulation of misfolded proteins. N-glycanase inhibition was studied using z-VAD-fmk, an irreversible inhibitor of N-glycanase. As z-VAD-fmk is also a caspase inhibitor, Q-VD-OPh was employed as a control as it has a similar caspase inhibition profile but does not inhibit of N-glycanase.

N-glycanase inhibition causes transient ER stress

Inhibition of N-glycanase using z-VAD-fmk increases protein aggregation and expression of Grp78

Cellular Thioflavim (THt) labelling provides a convenient assay for ER stress and protein misfolding [3] (fig. 2). Grp78 is upregulated during ER stress and the unfolded protein response (fig. 3).

Figure 2: (a) Thioflavin T labelling of HEK cells increased following 48 h treatment with z-VAD-fmk (50 µM), and returned to basal levels after 72 h. Live cell images were captured following incubation with THt (5 µM). (b) Fluorescence intensity was determined using ImageJ, n = 3.

Figure 3: (a) HEK 293 cells were treated with z-VAD-fmk (50 µM) [b] juices analysed by Western blotting with Grp78 (Syngene GeneTools, n = 3).

Autophagy deficient cells cannot recover from cellular stress caused by N-glycanase inhibition

Cells lacking ATG13 are unable to form autophagic vesicles (fig 6).

Autophagy-deficient ATG13−/− MEFs incubated with 50 µM z-VAD-fmk for 72 h showed a significant reduction in cell viability (fig 7a).

Wild type MEFs showed no reduction in cell viability (fig 7b). ATG13−/− MEFs showed no reduction in cell viability when treated with Q-VD-OPh, indicating cell toxicity is due to N-glycanase inhibition and not caspase inhibition (fig 7c).

Figure 7: (a) Viability of ATG13−/− and matched control MEFs following incubation with (a) z-VAD-fmk (50 µM) 72 h. n = 6 for ATG13−/− cells (b) wild type MEFs. n = 3 (c) Q-VD-OPh (50 µM) 72 h. n = 6 for ATG13−/− cells.

N-glycanase inhibition does not disrupt ER or actin cytoskeletal structure

Figure 8: (a) Confocal images of HEK293 cells treated with z-VAD-fmk and transfected with GFP-ER. (b) Fluorescent images of HEK 293 cells treated with z-VAD-fmk (50 µM). Actin stained with Phalloidin 488 and nuclei with Hoechst. Scale bars = 10 µm. n=1.

Future work

- CRISPR generated knockouts and clinical mutations of N-glycanase to study long-term inhibition on global/aggregate glycosylation
- How aggregates are targeted to autophagy network
- Analysis of proteosomal degradation machinery included in aggregates

Summary

- Peptide N-glycanase inhibition causes simultaneous ER stress and the accumulation of autophagic vesicles.
- Autophagy enables cells to degrade misfolded proteins and reduce ER stress.
- Cells die if they are unable to trigger autophagy during N-glycanase inhibition.

Acknowledgements

Dr. Holger Kramer (ORION core facility manager, Dept. Physiology, Anatomy and Genetics, University of Oxford)
Dr. Konstantinos Laftimammis (British Heart Foundation CRE, Cellular and Molecular Signalling Group, Dept. Physiology, Anatomy and Genetics, University of Oxford)
Dr Katja Riedorf, Tala Chehab and Kumar Sharma (Department of Life, Health and Chemical Sciences, The Open University)
Dr Nick Kitakis (The Babraham Institute, Babraham Hall, Cambridge)

References

Statistics

Error bars indicate SEM. * indicates P < 0.05. Data analyzed using ANDIV and receiver operating characteristic analysis.