Inhibition of \(N \)-linked Protein Deglycosylation Stimulates Autophagy

Conference or Workshop Item

How to cite:

Needs, Sarah; Alonzi, Dominic; Bootman, Martin D. and Allman, Sarah (2016). Inhibition of \(N \)-linked Protein Deglycosylation Stimulates Autophagy. In: Frankfurt Conference on Ubiquitin and Autophagy "Quality control in Life Processes", 04-07 Jul 2016, Goethe University Hospital, Frankfurt am Main, Germany.

For guidance on citations see FAQs.

© [not recorded]

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Inhibition of N-linked Protein Deglycosylation Stimulates Autophagy

Sarah Needs¹, Dominic Alonzi², Martin D. Bootman¹, Sarah Allman¹
¹Department of Life, Health and Chemical Sciences, The Open University; ²Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford

Glycosylation is the process by which sugars are added to biological molecules such as proteins. It regulates a myriad of biochemical processes, such as protein folding, adhesion, targeting and recognition events. Conditions resulting from in-born defects of glycosylation manifest with wide-ranging pathologies impacting nearly every organ system and result in severe multi-system diseases. These disorders are challenging to diagnose and difficult to map onto the clinical presentations, as a single defect in a sugar processing pathway may result in complex and varied downstream effects [1].

Protein folding and degradation

In a healthy cell, N-glycanase removes N-linked glycans from misfolded proteins prior to proteasomal degradation (figure 1).

NGUY1 disorder is a rare congenital disease caused by mutations in the gene that encodes N-glycanase resulting in:

- Loss/reduction of N-glycanase activity
- Build up of misfolded proteins which aggregate in the cell [1,2].

If N-glycanase is inhibited, autophagy is stimulated to compensate for the accumulation of misfolded proteins. N-glycanase inhibition was studied using z-VAD-fmk, an irreversible inhibitor of N-glycanase. As z-VAD-fmk is also a caspase inhibitor, Q-VD-Oph was employed as a control as it has a similar caspase inhibition profile but does not inhibit of N-glycanase.

N-glycanase inhibition causes transient ER stress

Inhibition of N-glycanase using z-VAD-fmk increases protein aggregation and expression of Grp78 (figure 2). Cellular ThioflavinT (ThT) labelling provides a convenient assay for ER stress and protein misfolding [3] (figure 2). Grp78 is upregulated during ER stress and the unfolded protein response (figure 3).

Autophagy deficient cells cannot recover from cellular stress caused by N-glycanase inhibition

Cells lacking ATG13 are unable to form autophagic vesicles (figure 6). Autophagy-deficient ATG13⁻/⁻ MEFs incubated with 50 µM z-VAD-fmk for 72 h showed a significant reduction in cell viability (figure 7a).

Wild type MEFs showed no reduction in cell viability (figure 7b). ATG13⁻/⁻ MEFs showed no reduction in cell viability when treated with Q-VD-Oph, indicating cell toxicity is due to N-glycanase inhibition and not caspase inhibition (figure 7c).

N-glycanase inhibition does not disrupt ER or actin cytoskeletal structure

Figure 8 (a) Confocal images of HEK293 cells treated with 50 µM z-VAD-fmk and transfected with GFP-ER (b) Fluorescent images of HEK293 cells treated with 50 µM z-VAD-fmk. Actin stained with Phalloidin 488 and nucleus with Hoechst. Scale bars = 10 µm, n = 1.

Summary

- Peptide N-glycanase inhibition causes simultaneous ER stress and the accumulation of autophagic vesicles.
- Autophagy enables cells to degrade misfolded proteins and reduce ER stress.
- Cells die if they unable to trigger autophagy during N-glycanase inhibition.

Future work

- CRISPR generated knockouts and clinical mutations of N-glycanase to study long-term inhibition on global/aggregate glycosylation.
- How aggregates are targeted to autophagy network.
- Analysis of proteosomal degradation machinery included in aggregates.

Acknowledgments

Dr. Holger Kramer (OXIN core facility manager, Dept. Physiology, Anatomy and Genetics, University of Oxford)
Dr. Konstantinos Lefkimmiatis (British Heart Foundation CRE, Cellular and Molecular Signalling Group, Dept. Physiology, Anatomy and Genetics, University of Oxford)
Dr. Katja Riedorf, Tala Chehab and Kumar Sharma (Department of Life, Health and Chemical Sciences, The Open University)
Dr Nick Kisalitis (The Babraham Institute, Babraham Hall, Cambridge)

References

Statistics

Error bars indicate SEM. * indicates P < 0.05. Data analysed using ANOVA and relevant post-hoc test.