Silicic volcanism on Mars evidenced by tridymite in high-SiO_2 sedimentary rock at Gale crater

The Buckskin outcrop is part of the Murray formation of lacustrine mudstones exposed in the Marias Pass area (SI Appendix, Figs. S1 and S2). The formation was previously studied in the Pahrump Hills (1), where three drill samples were analyzed by CheMin [Confidence Hills, Mojave2, and Telegraph Peak (2)]. With the assumption that bedding is approximately horizontal, the Marias Pass outcrop is ∼2–3 m thick and ∼6 m higher in stratigraphic position than the highest outcrop sampled in the Pahrump Hills (Telegraph Peak) (1). Mudstone, generally characterized by fine laminae, is the dominant depositional facies in the Pahrump Hills (1) and also at Marias Pass, as shown by the Mars Hand Lens Imager images of Marias Pass bedrock and the dust-free float rock Lamoos (Fig. L4). Here the laminae have a mean thickness of ∼0.5 mm and are characteristically parallel; individual laminae are laterally continuous for at least several tens of centimeters. The mudstone facies lacks evidence for cross-stratification at any scale, sediment

Tridymite, a low-pressure, high-temperature (>870 °C) SiO_2 poly-morph, was detected in a drilled sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO_2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO_2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides—perchlorates—chlorates), and has minor TiO$_2$ and Fe$_2$O$_3$T oxides (<5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO_2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO_2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

Significance

Tridymite, a SiO_2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO_2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogensis on Mars, with igneous evolution to high-SiO_2 compositions.

Reviews: J.B., Bristol University; R.M.H., Carnegie Institution of Washington; and H.Y.M., The University of Tennessee, Knoxville.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

Data deposition: CheMin and APXS experiment data records and CheMin diffraction patterns have been deposited with the NASA Planetary Data System at pds-geosciences. wustl.edu/dslms/m-cur_m-chemi-4_rdr_v1/1msln10_1xxx for the CheMin data and pds-geosciences. wustl.edu/dslms/m-aps-4.5_rdr_v1/1mslsaps_1xxx for the APXS data.

To whom correspondence may be addressed. Email: grotz@gps.caltech.edu or richard.v.morris@nasa.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1607098113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1607098113

PNAS Early Edition | 1 of 6
transport (or erosion) by traction currents, sediment-filled mudcracks, intraclasts that indicate reworking of mud by currents, or clasts. The observed features are characteristic of lacustrine sedimentation and contrast strongly with subaerial settings associated with eolian, fluvial, volcanic, or impact processes (1).

Table 1. Composition of presieve and postsieve dump piles (from APXS) and calculated compositions of crystalline and amorphous materials

<table>
<thead>
<tr>
<th></th>
<th>Presieve, wt.%</th>
<th>Postsieve, wt.%</th>
<th>Crystalline,* wt.%</th>
<th>Amorphous,* wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.43</td>
<td>73.65</td>
<td>68.20</td>
<td>77.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.66</td>
<td>1.57</td>
<td>0.12</td>
<td>2.54</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.45</td>
<td>5.66</td>
<td>13.91</td>
<td>0.04</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.08</td>
<td>0.10</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.94</td>
<td>5.49</td>
<td>7.27</td>
<td>4.71</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
<td>0.09</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>MgO</td>
<td>0.72</td>
<td>0.82</td>
<td>0.16</td>
<td>1.26</td>
</tr>
<tr>
<td>CaO</td>
<td>2.99</td>
<td>3.05</td>
<td>5.25</td>
<td>1.54</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.01</td>
<td>2.08</td>
<td>2.80</td>
<td>1.58</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.99</td>
<td>0.96</td>
<td>1.35</td>
<td>0.69</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.29</td>
<td>1.25</td>
<td>0.00</td>
<td>2.09</td>
</tr>
<tr>
<td>SO₄</td>
<td>4.85</td>
<td>4.80</td>
<td>1.06</td>
<td>7.31</td>
</tr>
<tr>
<td>Cl</td>
<td>0.28</td>
<td>0.29</td>
<td>0.00</td>
<td>0.49</td>
</tr>
<tr>
<td>Total</td>
<td>99.77</td>
<td>99.81</td>
<td>100.12</td>
<td>99.60</td>
</tr>
</tbody>
</table>

*Amorphous material composition calculated using APXS postsieve dump pile analysis as bulk composition, 40 wt.% crystalline material, and 60 wt.% amorphous material.

Buckskin Mineralogical Composition

Targets for chemical analyses by the Alpha Particle X-Ray Spectrometer (APXS) at the Buckskin site included tailings from the test drill hole (sol 1059), the sample acquisition hole (sol 1064; Fig. 1A), and dump piles from emptying the Collection and Handling for In-Situ Martian Rock Analysis tool before (sol 1065) and after (sol 1091) the collected drill powder was sieved to <150 μm [see MSL mission overview for background (3)]. The chemical similarity of APXS analyses of the presieve and postsieve dump piles (Table 1) indicates that mineralogical fractionation between bulk sample and CheMin-analyzed sample (<150-μm postsieve dump pile) is minimal.

CheMin is a transmission X-ray diffraction (XRD) and X-ray fluorescence instrument that uses cobalt radiation to produce two-dimensional Co Kα diffraction images (Debye ring pattern) (4). Samples are normally measured over the course of three nights, producing 45 total images that are summed and converted to a one-dimensional diffraction pattern over an angular range of 2–52° 2θ. The diffraction pattern used for Buckskin quantitative XRD analysis was the sum of the first 4 of 45 diffraction images, and tridymite peaks are clearly evident (Fig. 2). The remaining 41 images are affected by on-ring and off-ring diffraction spots. Coincident with the appearance of abundant spots are a decrease in the intensities of tridymite diffraction peaks (by ~50%) and a concomitant increase in the intensities of anhydrite diffraction peaks. This observation is based on a comparison of diffraction patterns for the sum of images 1 through 4 and 16 through 45, with each normalized to 45 images (i.e., the same integration time) (SI Appendix, Fig. S3). The explanation for the change in the nature of the diffraction patterns after image 4, possibly resulting from poor grain motion and particle clumping, is under investigation.

For quantitative analysis of CheMin XRD data, we used the full pattern-fitting capability (Rietveld) in JADE (Materials Data Inc.), with refinement of literature cell parameters (5) for well-crystalline minerals present at > 5 wt.% abundance, and FULLPAT analysis for poorly crystalline and XRD-amorphous phases (6–9). The combined results from both analyses are listed in Table 2. Unit cell parameters were refined for tridymite, plagioclase, sanidine, and magnetite (Table 3). The two most abundant crystalline minerals are plagioclase (43 wt.% of crystalline material; ~An41) and tridymite (34 wt.%). All tridymite principal diffraction intensities (10) are present and well defined at instrument resolution (Table 4 and Fig. 2). They are indicative of fully ordered monoclinic tridymite, originally formed at high temperatures, as opposed to a disordered material like opal-CT, which has broad diffraction peaks that represent portions of a disordered tridymite structure in the 4.05–4.10 Å and 2.50 Å regions and with a weak diffraction peak at 4.25–4.35 Å (11). There are suggestions in the literature that opal-T can exist as a substance more ordered toward tridymite than opal-CT, which would be recognized by a broad diffraction peak near 4.107 Å and weaker broad diffraction peaks near 4.326 Å and 2.50 Å (12). However, the Buckskin tridymite shows none of these characteristics. Refined diffraction patterns for plagioclase, tridymite, sanidine, and magnetite are illustrated in SI Appendix, Fig. S4, as well as patterns of cristobalite and anhydrite whose unit cell parameters were fixed during refinement.

The poorly crystalline or XRD amorphous material was modeled by contributions from opal-A, obsidian, and opal-CT to account for the diffuse diffusion feature centered near 26° 2θ and a low-angle scattering component that also includes a diffuse ferrhydrite-like diffusion feature centered near 40° 2θ (SI Appendix, Fig. S5). Instrumental artifacts, including a peak near 6.6° 2θ (~15 Å) from the Kapton cell window, were modeled using CheMin patterns from analyses of empty cells with Kapton windows. Although opal-A was used to model the amorphous material, any high-SiO₂ phase with a similar XRD pattern can be used, including SiO₂ glass, gem opal, and silica gel. (See SI Appendix, Fig. S6 for XRD patterns of amorphous high-SiO₂ materials produced by synthetic and natural
processes.) The amount of amorphous material in the bulk sample based on FULLPAT is 50 ± 15 wt.% (Table 2).

Chemistry of Crystalline and Amorphous Materials

The chemical compositions of Buckskin plagioclase, tridymite, sanidine, and magnetite were estimated from unit cell parameters calculated by Rietveld refinement (Table 3). However, mineral unit cell parameters are insensitive to abundances of trace and minor elements (e.g., Fe in plagioclase). To limit artificial assignments of these elements to the amorphous material, we adopted compositions of naturally occurring materials for the chemical compositions of plagioclase, tridymite, and sanidine (13–15), subject to the constraint that their compositions are consistent with those derived from XRD unit cell parameters (Table 3 and SI Appendix, Table S1). This approach was more difficult for magnetite, because its refined cell (a = 8.359 ± 0.001 Å; Table 3) is too small for stoichiometric magnetite \(Fe_2O_4\); \(a = 8.394\) Å (5). The cell parameters and bulk rock composition are most consistent with cation-deficient magnetite \(Fe_2.78O_4\) to accommodate the observed magnetite unit cell parameters. Alternatively to reduce the magnetite unit cell parameters that are not reasonable based on the composition of the rock (Table 1) include a chromite \[Fe^{3+}_2(Cr,Fe^{3+})O_4\] component (too little Cr) and hercynite \((FeAl_2O_4)\) spinel (MgAl_2O_4) components (all Al is associated with feldspar). An ulvöspinel \((Fe_2TiO_4)\) component gives a larger cell parameter rather than the smaller one observed. Stoichiometric compositions were used for cristobalite and anhydrite (SI Appendix, Table S1), and their unit cell parameters were fixed to literature values (5) during Rietveld analysis because these minerals were not present in sufficiently high concentrations (Table 3) to permit meaningful refinement of unit cell parameters.

The chemical composition of crystalline material in Buckskin (Table 1) was calculated from mineral chemical compositions (SI Appendix, Table S1) and their abundances (Table 2). The high SiO_2 concentration (∼68 wt.%) in the crystalline material reflects the high relative proportion of tridymite and feldspars. The bulk composition of the Buckskin sample (Table 1), the composition of the crystalline component (Table 1), and the weight proportion of the amorphous material from FULLPAT (a relatively uncertain 50 ± 15 wt.%) enable calculation (by mass balance) of the chemical composition of the noncrystalline (i.e., XRD amorphous) material (Table 1). However, the value of 50 wt.% results in an amorphous material with a calculated negative Al\(_2\)O\(_3\) concentration (−2.6 wt.%), which is not physically possible. Increasing the abundance of the amorphous material in the calculations results in a positive Al\(_2\)O\(_3\) concentration (0.04 wt.%; Table 1) at 60 wt.%. We take this value, which is within the uncertainty limits of the FULLPAT value, to represent the proportion of amorphous material, recognizing that the value could be higher. The amorphous material has a calculated value of ∼77 wt.% SiO\(_2\), which is consistent with the observed broad diffraction hump centered near 26° 2\(\Theta\) that is expected for high-SiO\(_2\) amorphous materials (SI Appendix, Fig. S6).

The calculated composition of the amorphous material also has a high anion concentration (SO\(_4\) + P\(_2\)O\(_5\) + Cl)∼10 wt.% (Table 1). Charge balance in the amorphous material is achieved if these anions occur predominantly as mixed-cation sulfate, phosphate, and chloride—perchlorate—chlorate XRD-amorphous salts. This calculation excludes SiO\(_2\) and TiO\(_2\), which do not readily form salts, and results in a small oxide excess (∼2 wt.%) taken as amorphous Fe\(_2\)O\(_3\).

Tridymite Formation Pathways

Tridymite is the stable polymorph of SiO\(_2\) at low pressures (up to ∼0.4 GPa) between ∼870 °C and ∼1,470 °C (e.g., refs. 16 and 17) and is thus metastable under ambient terrestrial (and martian) surface conditions. It is readily produced under laboratory conditions within its stability field, especially with alkali fluxes (18–27). We are not aware of any geologically reasonable, low-temperature formation pathway for preparation of tridymite outside of its thermochemical stability field. In the following paragraphs, we focus on natural occurrences of tridymite and evaluate their applicability to the origin of abundant tridymite in the Buckskin sample. Unless otherwise noted, the tridymite crystal structure is unspecified in the cited references.

Many terrestrial tridymite occurrences are associated with silicic volcanism, which, by its nature, has the requisites of high temperatures and high-SiO\(_2\) lava compositions (dacite and rhyolite) for tridymite formation within its stability field. Vapor-phase formation of tridymite (along with sanidine and iron oxides) occurs in vugs and lithophyses in rhyolitic ash-flow tuff (28–35). For example, the mineral stratigraphy within compound cooling units of a rhyolitic ash-flow tuff showed tridymite is most abundant (∼25 wt.%) in the central zone where temperatures were highest and occurs along with sanidine as crystals growing into voids; cristobalite and sanidine occur in cooler zones where replacement of glass predominates (30). Tridymite derived from oxidation of fayalite has also been reported in a rhyolite flow (Oregon) (36). At the Iwodake rhyolitic cone of Satsuma-Iwojima volcano (Japan), a tridymite formation pathway is alteration of rhyolite by volcanic vapors and acidic hydrothermal fluids at temperatures up to 900 °C (37–40).

![Fig. 2. Buckskin diffraction pattern (red) from sum of first four diffraction images, calculated pattern from Rietveld analysis (black), difference pattern (blue), and refined tridymite pattern (offset green); see SI Appendix, Fig. S4 for refined patterns of all minerals. Full width at half maximum intensity (FWHM) of the tridymite peak at 23.9° 2\(\Theta\) is 0.27° 2\(\Theta\), which corresponds to CheMin 2\(\theta\) resolution measured on Earth before launch (ref. 4, figure 18). Peak at ∼6.5° 2\(\Theta\) is from the Kapton cell window.](image-url)

Table 2. Mineralogy of Buckskin drill sample relative to crystalline material and relative to bulk sample using XRD- and APXS-derived concentrations for the amorphous material

<table>
<thead>
<tr>
<th>Crystalline material*</th>
<th>XRD*</th>
<th>APXS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>42.8 ± 3.0</td>
<td>21.4 ± 1.5</td>
</tr>
<tr>
<td>Sanidine</td>
<td>8.4 ± 1.8</td>
<td>4.2 ± 0.9</td>
</tr>
<tr>
<td>Magnetite</td>
<td>6.9 ± 0.8</td>
<td>3.5 ± 0.4</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>1.8 ± 0.6</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td>Tridymite</td>
<td>34.1 ± 2.0</td>
<td>17.1 ± 1.0</td>
</tr>
<tr>
<td>Cristobalite</td>
<td>6.0 ± 0.8</td>
<td>3.0 ± 0.4</td>
</tr>
<tr>
<td>Amorphous</td>
<td>—</td>
<td>50 ± 15*</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

*Units = wt.%; uncertainties are 2σ.
†Includes contributions from the broad hump centered near 26° 2\(\Theta\) (modeled as opal-A plus obsidian (33 wt.% of bulk sample) and opal-CT (6 wt.%)) and the broad hump centered near 40° 2\(\Theta\) modeled as ferrhydrite plus low-angle scattering (21 wt.%). (SI Appendix, Fig. S5).

*Lower limit; constrained by APXS chemistry.
Acid sulfate leaching of rhyolite also occurred there, increasing the SiO$_2$ concentration from \sim71 wt.% to \sim97 wt.%.

The temperature regime associated with basaltic and intermediate volcanism can also provide a formation pathway for tridymite when the requisite high-SiO$_2$ material is present. Pyroclastic flows and associated ash plumes generated by partial lava dome collapse at andesitic Soufrière Hills volcano (Montserrat) have 10–27 wt.% tridymite plus cristobalite with minor quartz in their <10-μm size fraction (41). The tridymite and cristobalite are inferred to have formed by vapor-phase crystallization and devitrification of rhyolitic glass (\sim78 wt.% SiO$_2$) within the lava dome. In altered basalts from Stromboli volcano (Aeolian Islands, Italy) and andesites from Augustine volcano (Alaska), the high-SiO$_2$ host for tridymite is the residue after acid sulfate leaching of primary mafic rock (42, 43). Pyrometamorphic ejecta (buckite) blocks (tridymite–clinopyroxene facies) have up to \sim90 vol.% tridymite at Stromboli volcano. Occurrences of quartz paramorphs after tridymite have been reported in contact metamorphic assemblages between high-SiO$_2$ rocks and basaltic lava (e.g., refs. 44–46); however, quartz and not tridymite would be detected by CheMin for an equivalent assemblage at Gale crater. The high concentrations of tridymite (\sim14 wt.% of bulk sample) and SiO$_2$ (\sim74 wt.%) for the Buckskin sample are not reasonably sourced from low-silica volcanics for which tridymite concentrations would be very low when averaged over the volumetric equivalent of a “Lake Gale” catchment involving entirely basaltic to intermediate volcanics.

Tridymite has been reported at terrestrial impact structures where target lithologies are SiO$_2$-rich and heated to elevated temperatures by the impact event (47, 48). Monocrystalline tridymite was reported (abundance not quantified) in a core from the Chesapeake Bay impact structure, but only in a silica-rich 5-cm interval (\sim70 wt.% SiO$_2$ relative to whole rock) (48). In cores from the Popigai impact structure (gneiss target lithology), we calculate from ref. 47 that the mean tridymite concentration of melt rocks is \sim1 vol.%, although up to \sim5 vol.% tridymite is reported for several individual melt rocks. The impact that created Gale crater (\sim150 km diameter) generated a melt pool possibly of 0.5–1 km thickness (49) and presumably injected impact melt into fractured crater walls and central uplift. Even if the preimpact target lithology were SiO$_2$-rich (an assumption implying silicic volcanism predating the Gale impact), the high tridymite concentration in the Buckskin laminated mudstones is unlikely sourced from a Lake Gale catchment of impact melt rocks given the low tridymite abundance of known impactites.

As with terrestrial occurrences, tridymite in extraterrestrial samples has also been inferred to result from high-temperature igneous and/or impact processes on parent bodies or to form by direct condensation at high temperatures in the solar nebulae (e.g., refs. 24 and 50–58). Tridymite, cristobalite, quartz, and/or silica-rich glass are reported as minor constituents of lunar samples (e.g., ref. 57) and martian meteorites (e.g., refs. 51, 53, and 59). A granitic microclast in polymict ureilite EET 87720 contains a phase tentatively identified as tridymite by micro-XRD, with \sim98 wt.% SiO$_2$ (58). The bulk composition of the microclast (excluding interstitial glass) has \sim77 wt.% SiO$_2$ and the interstitial glass is silica-rich (SiO$_2$ \sim73 wt.%) and volatile-rich (\sim11 wt.% SO$_3$ and \sim1 wt.% Cl). According to ref. 58, this microclast is evidence for an evolved melt on an unknown parent body with isotopic and volatile element data possibly pointing to Mars.

Tridymite has been synthesized in the laboratory by heating amorphous SiO$_2$ at 196 °C in glycol solutions (60). Aside from the fact that the chemical composition of the solutions used in these experiments is not geologically realistic, the temperature of the experiments is higher than those inferred so far for diagenesis at Gale crater [<\sim80 °C (8)], and the relative intensities of the diffraction peaks for the tridymite synthesized by ref. 60 differ markedly from those for the well-crystalline Buckskin tridymite (Table 4). These experiments indicate that low-temperature synthesis of metastable tridymite is possible and should be further explored. The apparent absence in nature of tridymite formation at low temperatures, based on studies of terrestrial and extraterrestrial rocks over many years (61–72) (see SI Appendix), suggests that this is an unlikely explanation for the large quantities of tridymite observed in the Buckskin sample.

Significance of Tridymite in the Murray Formation

In the absence of a geologically credible, low-temperature formation pathway for tridymite, and based on the consistency of its occurrences in natural samples as discussed in *Tridymite Formation Pathways*, we infer that tridymite in the Murray formation (Buckskin drill sample)

<table>
<thead>
<tr>
<th>Space group</th>
<th>Tridymite</th>
<th>Plagioclase</th>
<th>Sanidine</th>
<th>Magnetite</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, Å</td>
<td>4.996 ± 0.002</td>
<td>8.155 ± 0.006</td>
<td>8.54 ± 0.02</td>
<td>8.359 ± 0.002</td>
</tr>
<tr>
<td>b, Å</td>
<td>8.671 ± 0.005</td>
<td>12.862 ± 0.006</td>
<td>13.01 ± 0.02</td>
<td>8.359 ± 0.002</td>
</tr>
<tr>
<td>c, Å</td>
<td>8.194 ± 0.003</td>
<td>7.106 ± 0.004</td>
<td>7.15 ± 0.02</td>
<td>8.359 ± 0.002</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>93.32 ± 0.03</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>90.42 ± 0.02</td>
<td>116.28 ± 0.03</td>
<td>115.8 ± 0.1</td>
<td>90</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
<td>90.10 ± 0.04</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>352.8 ± 0.3</td>
<td>666.9 ± 0.5</td>
<td>716 ± 3</td>
<td>584.04 ± 0.4</td>
</tr>
</tbody>
</table>

Tridymite and sanidine are monoclinal; plagioclase is triclinic; magnetite is cubic. Chemical compositions calculated from unit cell parameters are An$_{43}$ + 4Ab$_{59}$ + 6 (plagioclase), Ab$_{22}$ + 16Or$_{68}$ + 16 (sanidine), and FeO$_{2.16} + 0.03$O$_2$ (cation-deficient magnetite). Uncertainties are 1σ.

<table>
<thead>
<tr>
<th>hkl*</th>
<th>Intensity</th>
<th>d, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 10</td>
<td>Buckskin</td>
<td>Ref. 10</td>
</tr>
<tr>
<td>010</td>
<td>0.4260</td>
<td>0.3222</td>
</tr>
<tr>
<td>020</td>
<td>0.3002</td>
<td>0.4060</td>
</tr>
<tr>
<td>022</td>
<td>0.4107</td>
<td>0.4072</td>
</tr>
<tr>
<td>023</td>
<td>0.3864</td>
<td>0.3827</td>
</tr>
<tr>
<td>024</td>
<td>0.3809</td>
<td>0.3811</td>
</tr>
<tr>
<td>025</td>
<td>0.3792</td>
<td>0.3814</td>
</tr>
<tr>
<td>026</td>
<td>0.3013</td>
<td>0.2977</td>
</tr>
<tr>
<td>027</td>
<td>0.2970</td>
<td>0.2968</td>
</tr>
<tr>
<td>028</td>
<td>0.2945</td>
<td>0.2962</td>
</tr>
<tr>
<td>029</td>
<td>0.2502</td>
<td>0.2498</td>
</tr>
<tr>
<td>030</td>
<td>0.2487</td>
<td>0.2482</td>
</tr>
<tr>
<td>031</td>
<td>0.2386</td>
<td>0.2382</td>
</tr>
<tr>
<td>032</td>
<td>0.2337</td>
<td>0.2312</td>
</tr>
<tr>
<td>033</td>
<td>0.2309</td>
<td>0.2306</td>
</tr>
<tr>
<td>034</td>
<td>0.2290</td>
<td>0.2290</td>
</tr>
</tbody>
</table>

* hkl are the Miller indices.
is a marker for low-pressure and high-temperature (>870 °C) processes, consistent with its stability field, and high-SiO2 precursor lithologies. Silicic volcanism fits the geologic, thermal, and mineralogical context best, with tridymite being incorporated into the Murray formation laminated mudstone (i.e., tridymitic mudstone) at Buckskin as detrital sediment from erosion of silicic volcanic rocks. It follows that, if cogenetic, the cristobalite, sanidine, plagioclase, and any amorphous high-SiO2 glass are also detrital. The high-SiO2 glass would constitute some unknown fraction of the amorphous silica material determined by CheMin (33 wt.% of bulk as opal-A and/or high-SiO2 glass). However, we infer, from the presence of opal-CT in the Buckskin amorphous material, that any glass has undergone diagenesis at least in part if not wholly to opal-A and opal-CT. This diagenesis could have occurred in the volcanic source area or subsequent to lithification of tridymitic mudstone at Marias Pass. If the diagenesis took place in the source region, the opaline material is detrital.

Laucustrine sediments in cores from Lake Tecocomulco (Mexico), with a catchment basin that includes basaltic–andesitic, andesitic, and rhyolitic volcanic rocks (73), provide an appropriate terrestrial analog to an ancient Lake Gale and the Murray formation. Sedimentary units in core T-A95 from that lake include both fine-grained elastic sediments and coarser-grained dacite–rhyolite air-fall tephra. The highest combined abundance of tridymite plus cristobalite (up to >30% with no quartz) are in unit IIA, a silt sand clastic sediment with ~60 wt.% SiO2. Tridymite and cristobalite are present at generally lower abundances (5–30%) in two air-fall tephra layers in unit IIB (~70 wt.% SiO2) from Plinian eruptions 8–60 km away (73). The Lake Tecocomulco analog shows that sediments with high abundances of tridymite and cristobalite, like those in the Buckskin sample, are obtainable in lake sediments with a catchment that includes silicic volcanism.

By partial analogy with tridymite-bearing sediments in Lake Tecocomulco (73), silicic volcanic rocks exposed within the catchment of ancient Lake Gale could have contributed the detrital tridymite and cogenetic material to the Murray formation. Fine-grained sediments are most readily formed by downstream fining in alluvial settings, and evidence for this is preserved in the Gale crater moat (74). The even and fine lamination observed in the Murray formation at Marias Pass is inconsistent with direct fallout of fine tephra (75), even through a water column (1). For the lower Murray formation at Pahnpump Hills, these regular laminae were interpreted to result from the setting of fines derived from distal deltas, likely as plumes (1). Therefore, we suggest that the tridymite-bearing material was derived by erosion and transport from a silicic source area in a manner similar to Lake Tecocomulco. Unlike the Lake Tecocomulco analog, which has units of interstratified silicic volcanic ash (73), there are no known silicic volcanic rocks interstratified with Gale sedimentary rocks, so we appeal to crater rim and central peak regions as sources of tridymite-bearing material that may predate the Gale crater impact.

Recent studies have suggested that the Gale crater rim/wall may host igneous lithologies more evolved than other known Martian igneous rocks, ranging up to ~67 wt.% SiO2 (75). The Lake Gale basin would have captured sediments from these terrains. Mineralogical observations across Mars made by orbital remote sensing have also been interpreted as evidence for magma evolution to compositions more silicic than basaltic (76–78). The microclast in the ureilite meteorite EET 87720, which has a Buckskin-like mineralogy and composition, is also consistent with an evolved magma on a parent body that is possibly Mars (58).

The mixed-cation salts, minor oxides, and any precipitated silica in Buckskin amorphous material can be interpreted as cements precipitated during deposition and/or from later infiltrations by aqueous solutions having variable chemistries, temperatures, and acidities. The crystalline cation-deficient magmatite could also be present as a primary precipitate and cement, but there are insufficient constraints available to exclude igneous detritus or diagenesis of Fe-bearing materials. Anhydrite is interpreted as late fracture and vein fill as reported for other drill samples (8), implying its precipitation postdates lithification of the tridymite-bearing sedimentary rock.

The origin of the opal-A is not constrained. It could have formed as an alteration product of high-SiO2 volcanic glass, as a residue from acid sulfate leaching of silicates in the sediment source region, or as similar residue from leaching in the sediment itself. Another alternative is primary precipitation of silica gel in the Gale lake environment followed by diagenesis to opal-A and opal-CT after burial. CheMin would not be able to distinguish between silica gel and opal-A, however (SI Appendix, Fig. S6). At present, there are insufficient constraints to partition the high-SiO2 amorphous material among the aforementioned possible formation pathways, although silicic volcanism and diagenesis can account for all opal-A and opal-CT.

Implications for Martian Petrogenesis

The Buckskin tridymitic mudstone sample contains abundant SiO2 phases (~55 wt.% of bulk sample) consisting of 14 wt.% tridymite, 2 wt.% cristobalite, 6 wt.% opal-CT, 33 wt.% opal-A and/or high-SiO2 glass, and no quartz. The monoclinic tridymite is well crystallized and not a mineraloid, such as opal with partial tridymite crystallization, which might be attributed to a low-temperature origin. Because the Martian crust is largely basaltic, we explored other options for the origin of Buckskin tridymite. Of all of the options, derivation from silicic volcanic rocks is the most parsimonious within available constraints, the most important being its high formation temperature (~870 °C to ~1,470 °C).

Although the general view of Mars is that of a basaltic planet, tridymite at Buckskin adds support to previous studies that describe regions of Mars where occurrences of high-SiO2 igneous rocks have been inferred (76–78). Furthermore, the Buckskin tridymitic mudstone is yet another indication of evolved volcanic compositions in sedimentary source regions of Gale crater (75). The unexpected discovery of tridymite at Gale crater is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-silica compositions.

ACKNOWLEDGMENTS. We acknowledge the unwavering support of the JPL engineering and MSL operations staff. This research was supported by the NASA Mars Science Laboratory Mission. The MSL APXS was financed and managed by the Canadian Space Agency, with MacDonald Dettwiler & Assoc., Brampton, as prime subcontractor for the construction of the instrument. Operation of the MSL APXS is supported by contract 90552-110786 and by NASA. Some of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J.D.F. thanks the Danish Villum Foundation for support. S.P.S. acknowledges UK Space Agency funding.

