Transforming nature-society relations through innovations in research praxis: a coevolutionary systems approach

How to cite:

For guidance on citations see FAQs.

© [not recorded]

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
https://www.peterlang.com/view/product/62160

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Transforming nature-society relations through innovations in research praxis

A co-evolutionary systems approach

Ray L. Ison

Appreciating our context

At this historical moment when the evidence of widespread systemic failure is pervasive, ranging from financial to ecosystem collapse, there is good reason to reflect on our circumstances. The typical way to engage in such a reflection is to look outside ourselves at situations ‘out there’. When we look we see and name carbon pollution, consumerism, inequality, human induced climate change, poverty, social alienation and habitat and biodiversity destruction. We are very adept at analyzing and naming problems or issues but we are not good at reflecting on what it is that we, as individuals, cultural groups, or as a species, do when we do what we do (Ison, 2010).

This paper is an invitation to the reader to reflect on what it is that they do when they do what they do. I acknowledge that many find this difficult as the practices associated with accepting the invitation are not commonplace in our daily living. Developing answers involves not only thinking but thinking about our thinking, or as I would have it, our doing! In this exploration of our contemporary context I want to draw attention to three matters: (i) how co-evolution is understood and thus what agency we might have in shaping trajectories for future nature – society relationships; (ii) how research as a form of practice is understood and (iii) how we choose to engage with situations in our attempts to change them for the better. I introduce several heuristic devices, or conceptual models, as a basis for exploring our understanding of these matters.

In the second part of the paper I introduce four forms of practice developed in research with colleagues and students; all are purposeful practices I consider relevant to attempts to innovate in governing (which includes managing) our co-evolutionary future. They are: (i) Rapid, multi-perspective appraisal, which has been developed in a series of research and consultancy settings over 20 years. It is based on
the assumption that when engaging with complex situations individuals only ever develop a partial appreciation (because of their traditions of understandings and the boundary judgments that are made). This practice can be used to better formulate research questions, research design, stakeholder engagement and for systemic staff induction; (ii) Metaphorical inquiry, developed on the understanding that human beings live in language and that all language is metaphorical; (iii) Social learning, a new paradigm for systemic governance, including for natural resources management (NRM), which moves beyond information provision, consultation and stakeholder participation to address the systemic complexity associated with multiple stakeholders attempting to transform their situations and (iv) systemic inquiry, an institution (as is a project or program) and an approach, or practice, currently being researched and developed as an antidote to living and operating in a projectified world.

A foundation for all four practices is systems thinking in practice (STiP), based on contemporary appreciations of the concept ‘system’. How STiP can guide transformative praxis, or sustainable-development research praxis, is explored. The understandings on which these four practices are built have profound implications for the practices of researchers as we face an uncertain future and challenges to contemporary forms of democracy and capitalism (Hanauer and Beinhocker, 2014).

Adaptation as co-evolution

From my perspective the greatest challenge we as a species face is whether or not we can conserve, over time, our structural coupling with the biophysical world, with each other and with other species in a manner that conserves elements of quality. Structural coupling is a term which describes the co-evolutionary trajectory of a structure determined system with its medium or niche (Figure 1; Maturana and Varela, 1987).

Understanding structural coupling involves the ability to distinguish between domains, and in so doing taking a ‘double look’. This also involves relational thinking. In Figure 1 the “observer eye”, commonly used by Humberto Maturana (see Maturana, 2007), makes the point that the observer is always part of the system or the description, and that we can take different looks. As Bunnell (2008) points out: ‘the circular arrow represents a living system in recursive autopoiesis (its constitutive domain, or physiology). The living system as a whole also has a reciprocal adaptive relationship with its niche (its relational domain or behavior).’ Thus ‘a living system cannot persist as such without conserving both. Yet we cannot claim that one causes the other, nor can we explain either in terms of the other, even though what takes place in one does alter the
dynamics of the other. Pedagogically this figure serves as a touchstone for noting the difference between the generative domain and the phenomenal domain – and for recognizing that confusing these looks leads to troublesome misunderstandings’.

Figure 1. Two looks of an observer in noting the generative domain, or the resultant phenomenon in a different domain

This figure depicts Maturana’s iconic representation of a living system that remains conserved as such, as long as both autopoiesis and adaptation (structural coupling) persist.

Source: adapted from Bunnell, 2008, p. xiii.

The nature and dynamics of relational thinking and co-evolution can be understood through exploring certain phenomena and metaphors. Consider the question: How is walking conserved over time as a practice? From a relational thinking perspective the best answer is that the relationship between an organism (moving its legs in a particular way) and a medium (e.g. the floor, path, etc.) is conserved. Walking as a practice arises in the relationship between the two; when the relational dynamics break down then walking is no longer conserved.

Understanding co-evolution as the conservation of structural coupling is relevant to many conceptual and praxis (theory-informed practical action) fields. Collins and Ison (2009a) note that the word ‘adaptation’ has always been important in scientific fields associated with evolution, ecology and environmental change. At the level of metaphor they claim two possible conceptions of ‘adaptation’ are possible. Both have significant practical and policy implications but the implications differ. The first metaphor, and the most widespread understanding, is that of ‘adaptation as fitting into’. In this metaphor something (predetermined) is fitted into a situation (also predetermined or knowable in advance) to which it is fit-able or suited, like when doing a jigsaw.

The other metaphor is that of ‘adaptation as a good pair of shoes’. To appreciate this metaphor, consider what makes a good pair of shoes at a given moment? Usually it is because they have been worn in, they are comfortable, flexible etc. But these same shoes may not be a good pair of
shoes if they were put in a cupboard for a year before wearing them again. Why? Because a person’s feet will have changed over the year but not the foot coupled to the shoes! Within this metaphor a good pair of shoes arises from the recurrent interactions between shoes and feet – this exemplifies co-evolution e.g. of a species and its niche. The process could be understood by expanding Figure 1 to depict the changing nature of structural coupling over time – a process in which there is mutual influence.

Within this understanding of the dynamics of co-evolution, a relevant metaphor is ‘adaptation as co-evolution’. Rather than seeing adaptation as one way, co-evolution is different – the idea of a separate environment is set aside in favor of processes of mutual interaction which in human social systems can be seen as processes of learning and development (Ison, 2010). In an elaboration the shoes can also be understood as mediating the relationship between the foot (i.e. organism or social system) and the medium (i.e., the floor or biophysical environment). Thus in metaphorical terms a shoe can be understood as a form of technology or institution (in the institutional economics sense) that mediates relationships between a social and biophysical system i.e., influences the trajectory and quality of structural coupling.

Framing our contemporary concerns in terms of the on-going maintenance of structural coupling moves the focus away from widespread commitments to linear, causal thinking to systemic, relational, circular thinking and causation. Within this alternative framing nature and society could be understood as mutually self-creating and our research concerns might shift to questions regarding trajectory and the qualities of the relational dynamics. A simple way of understanding the latter can be the loss of amenity/experience many now encounter when they find it unacceptable that their children or grandchildren swim in the local river or drink at a local spring. In the breakdown of the quality of the relationship between humans and nature both what it means to be human and what is the nature of nature change.

Research practice

The term praxeology means to develop a theory of practical action. This field of scholarship is, I contend, underdeveloped (but see Colvin et al., 2014) and in part accounts for why it is difficult to orchestrate effective action amongst individuals who have different disciplinary backgrounds (Ison, 2008a). As a means of reflecting on what it is we do when we engage in research practice a number of heuristics have been developed to explore the systemic, relational nature of research praxis (Ison, 2008a; 2010; Ison et al., 2014b). Figure 2 is designed to be used heuristically. In its simplest form research practice involves a
researcher/practitioner (P) with a framework of ideas (F), a methodology (M) and situation of concern (S)…a ‘real world’ situation. Of course no researcher is ever outside the research situation even though they may claim to be (i.e., thus claiming to be objective). Researchers are always socially situated and rarely is a researcher practicing alone – hence the configuration of practice depicted in Figure 2.

I do not propose to unpack this heuristic further here as it has been done extensively elsewhere. However I do want to highlight how unaware most researchers seem to be in relation to the agency they have in making framing choices about their situations of concern (see below). In other words we conserve the mainstream view of research practice which privileges the view that situations have ‘real’ properties independent of the relational engagement with the situation by an observer(s). Of course history shows this is an adequate framing choice for some situations, but it is certainly not adequate for the range of contemporary situations outlined above (Ison et al., 2014b).

Figure 2. A heuristic model of research as a form of practice

In this example learning in a two person project team comprising research practitioners (P) with agreement about a common theoretical framework (F; where IAR4D is Integrated Agricultural Research for Development) and methodological approach (M, where MSC is Most Significant Change), employing particular techniques (T) and committed to capturing joint learning (C, using a particular IT platform called Confluence).

If we consider Figure 2 systemically, as a whole then there are emergent properties of this practice; these include the possibility of:

- learning about each or all of P, F, M, S, T and C;
- considering the conduct of the research – the act of connecting all of the elements as a form of performance – e.g. how effective was the research (first-order effectiveness)?
• taking a meta or second order perspective on the researching system-environment relationship (as depicted in Figure 1 and in Figure 2 by the person(s) operating at two levels).

This heuristic (Figure 2) can be used to explore other aspects of research practice – by introducing more and different actors e.g. co-researchers etc.; by reflecting on the implications of epistemological awareness, but perhaps most importantly, for becoming aware of the means of engaging with situations in which research practice is being conducted.

How we choose to engage with situations

There is a rich literature on engaging with situations (Armson, 2011; Ison, 2010; McCool and Guthrie, 2001; Zwaan, 1999). Historically the main predisposition of researchers has been to refer to the ‘problem’ without awareness of the literature on the social construction of ‘problems’ and the realization that the ‘problem metaphor’ also conceals the idea of opportunities and other framing choices. The choice of framing for a situation cannot be divorced from an individual or group’s epistemological, theoretical and methodological commitments. Thus for some researchers the situation of interest is a reality independent of the observer in which some phenomena or a phenomenon is of concern (Ison, 2008a). Others, as exemplified within the field of systems scholarship, have coined neologisms to describe situations with particular features (Ison et al., 2014b). Ackoff (1974) distinguished between messes and difficulties; Rittel and Webber (1973) between wicked and tame problems and Schön (1995) between the ‘swamp’ of real life issues and the high ground of continued ‘technical rationality’. What is interesting is that all of these authors had experienced the uncertainty and complexity of ‘planning’ as an arena of praxis. From these experiences they coined different terms to describe what was, basically, the same set of phenomena that they had experienced (see Ison et al., 2014b where the implications of these framing choices are explored in detail).

A more recent neologism, beginning to be conserved amongst researchers who claim commitments to ‘complexity theories’, is the ‘complex adaptive system’ (e.g. Plsek & Greenhalgh, 2001; Ison & Schlindwein, 2006). From my perspective this is best seen as part of a lineage of responding to situations which are experienced as uncertain, complex, contested, interconnected (see Steyaert & Jiggins, 2007) by the practice of coining a neologism and reifying the situation as ‘some thing’. From my perspective what makes this particular set of neologisms interesting is that they all characterize a particular type
of situation in which most forms of contemporary practice – across all domains – seem inadequate. Climate change adaptation is a case in point as well as hunger, food security etc. Ison (2008a) also suggests that taking up and institutionalizing trans-disciplinary research within the current national and international R&D systems can also be considered in this light.

Ironically, forty years after Rittel and Webber (1973) first coined the term ‘wicked problems’ there are well argued exhortations to develop capacities to manage ‘wicked problems’ beginning to appear in policy circles (e.g. APSC, 2007; Head, 2008; Head and Alford, 2013). These exhortations may, or may not, be linked to the need to introduce and institutionalize complexity and systems thinking perspectives (Ison et al., 2014b).

Let me exemplify these claims by exploring how we can choose to engage with agricultural situations and thus with practices designed to generate sustainable animal production technologies and practices. In this section I draw on the innovative and radical ideas that informed the development of student-centered learning approaches at the former agriculture faculty at the University of Western Sydney (Hawkesbury) (Bawden et al., 1985).

How agriculture is conceptualized determines how agricultural research is framed and thus what constitutes an innovation – a change for the better. Figure 3 depicts a model that conceptualizes dynamic autotrophic (plants), heterotrophic (animals) and decomposing sub-systems being managed but managed for a social purpose. Developed at Hawkesbury (Bawden et al., 1985), the model builds on agroecosystems analysis (Conway, 1985) and Checkland’s (1999) concept of human activity systems and was used for teaching and research for many years. This conceptualization enables an exploration of the question of purpose (of research, farming, cropping animal production etc.) and how purpose for farming systems is attributed differently by different stakeholders. Because we each have different histories and thus mental models, the question of purpose underpins conceptually many of the issues associated with participation. In the past, researchers have often mistakenly attributed purpose (e.g. profit maximization in the case of farm management economists) in isolation from those affected by their attributions. Similarly dairy scientists have, from my perspective, too often focused on optimizing rumen efficiency at the expense of herd or whole farm viability and sustainability (see Pearson & Ison, 1997).
The other feature of note from the Hawkesbury conceptual model was the coupling of a farming system with a wider environment which together changed over time – an example of co-evolution with, not adaptation to, an environment (Ison, 2003). In Figure 3 a number of forces are depicted as ‘impacting’ on this co-evolutionary process (in later versions of the figure these were changed to double-headed arrows in recognition that ‘forces’ had the potential to act in different ways). This conceptualization contrasts with understandings of agriculture or farming in which implicitly or explicitly the only measure of performance is productivity (or efficiency) and agricultural practice or agricultural enhancement is seen as purely a scientific or technological endeavor. Exploring this model, i.e., using it heuristically, enables different stakeholders to reveal how they are conceptualizing agriculture or farming as a system of concern. Engaging with questions of purpose also enables boundary shifts in thinking such as, for example, moving to a ‘livelihood system’ of which farming is part, rather than ‘farming’ being the system of interest.

My own early experiences of farming, international development and the innovations at Hawkesbury were important influences in shaping my research trajectory over the succeeding 28 years after leaving Hawkesbury (see Ison & Russell, 2000). In the next section I describe four practices arising from this 28 year program that researchers could employ if they wished to develop a systemic, co-evolutionary praxis.
Practices relevant to a co-evolutionary future

Rapid, multi-perspective appraisal

Rapid, multi-perspective appraisal is a way of engaging with situations that acknowledges complexity and uncertainty and recognizes that all human beings have traditions of understanding out of which they think and act (see Ison & Russell, 2007). In part this research was inspired by the work of Robert Chambers and others who developed Rapid Rural Appraisal (RRA), later Participatory Rural Appraisal (PRA) and then later still, Participatory Learning and Action (PLA). My motivation however grew out of my own experiences of development failure (Ison & Russell, 2000) and my conviction that similar phenomena operated in my own country i.e., Australia. I also became more aware of the social construction of problems and how, all too often, these were formulated from a narrow, non-systemic perspective that led to research that was either irrelevant or not utilized. A particular limitation that soon appeared to me in my academic career was the limitations of narrow disciplinary perspectives (Figure 4).

Figure 4. A series of abstractions from a particular situation from the perspectives of disciplinary experts

One can add these perspectives together (multidisciplinarity) or actively synthesize or articulate the implications of the differences (interdisciplinarity).

Source: Adapted from Pearson & Ison 1997 from original work by Ueli Scheuermier.
In our adaptive research on RRA and PRA we were able to successfully design and conduct multi- and interdisciplinary engagements between different disciplinary experts and local people and thus to: (i) value different perspectives and knowledges; (ii) better understand the systemic dynamics of local situations; (iii) build stakeholding in research activity; (iv) remove commonly held misconceptions held by city-based experts about rural realities and (v) develop more appropriate research hypotheses systematically situated in the lives and circumstances of the intended beneficiaries (e.g. Figure 5; Ison & Ampt, 1992; Ampt, 1993; Webber & Ison, 1995).

Figure 5. *The basis for a research program: a conceptual model of the systemic factors giving rise to a late summer-autumn feed gap for livestock derived from a PRA conducted in the Forbes Shire, NSW*

Designed and managed appropriately rapid, multi-perspective appraisal can be a means to generate co-researching relationships and to generate genuine interdisciplinary collaboration. It can also become a
means to break out of the limitations of the linear transfer of technology trap (see Russell et al., 1991; Ison & Russell, 2007). This work has been further developed for use in organizational settings such as for staff induction where rather than being the subjects of induction, new employees become active co-inquirers into the systemic nature of an organization (Armson et al., 2001). Because our approach is inquiry based and recognizes the complexity of the situation, systemic understandings of an organization can be built, as well as personal networks, which increase staff effectiveness. The traditional induction model falls into the trap that considers there is a single, knowable organization which can be introduced to new staff by senior management.

Metaphorical inquiry

Ison (2005) and McClintock et al. (2004) outline the nature and rationale for our research on, and with, metaphor; this research is also built on an appreciation of the last 40 years of cognitive science research and the propositions that all human beings live in language and that all language is metaphorical (Lakoff and Johnson, 1999). Our concern has been to develop ways of appreciating and working with metaphors in which the broader research agenda has been to develop a praxiology for systemic governance in the context of sustainable development through systems thinking in practice (McClintock, 1996; McClintock et al., 2003; 2004; Helme, 2002; Ison, 2002; Ison et al., 2015).

McClintock (1996) elaborates on how we understand and use metaphor. His starting assumption was that different ‘countrysides’ could emerge from different ways of working with people because an explicit focus on metaphors and researching with people provokes different understandings and practices. His research began with the proposition that considering different metaphors is a way of appreciating diverse understandings and creating opportunities to learn for participants – to become both responsible and response-able. It is also a way of exploring the context of a situation before formulating problems or opportunities for purposeful action, a basic starting point for systems practice for environmental decision making (Blackmore and Morris, 2001). Metaphors provide a way to understand our understandings and how we use language because our ordinary conceptual system, in terms of which we think and act, is metaphorical in nature. Paying attention to metaphors-in-use is a way we can reflect on our own traditions of understanding (McClintock et al., 2003; 2004).

Metaphors both reveal and conceal, but because we live in language it is sometimes difficult to reflect on our-metaphors-in-use. Being aware of the metaphors we do use can improve our understandings of research
situations and the choices we have in describing them (Ison et al., 2013a). The strategy of mirroring particular metaphors or metaphor clusters thus holds open the possibility for reflection and learning (Figure 6). For example, as outlined by McClintock (1996), the metaphor countryside-as-a-tapestry reveals the experience of countryside as a visually pleasing pattern, of local character and diversity, and of what is lost when landscapes are dominated by monocultures. However, the metaphor conceals the smell, danger, noise and activity of people making a living. By exploring metaphors, we can make part of our language use ‘picturable’ and thus rationally visible, publicly discussible and debatable, as well as a psychological instrument which can be a practical resource ‘with which and through which we can think and act’ (Shotter, 1993). It may also be used to explore and trigger enthusiasms – where enthusiasm is a predisposition to action (Russell & Ison 2007).

Figure 5. *A metaphor cluster generated in England in 1994-6 where the metaphor is read as: farming or farmer as.........*
McClintock’s (1996) conclusions contribute to an agenda for meeting demands for increased transparency and participation in environmental decision-making. This in turn requires the building of social and relational capital through processes of social learning (see below). McClintock (1996) identified two parallel ways for working with metaphor: acting as practitioner-narrator and practitioner-facilitator (practitioner here can be translated as researcher, advisor, manager, community worker or government agent). The role of practitioner-narrator includes the following steps:

1. Make initial distinctions around the metaphors in present use (e.g. for landscapes, lifestyles, products, events).
2. Bring forth metaphors of the practice context.
3. Explore the metaphors by considering revealed and concealed aspects.
4. Judge enabling and disabling metaphors and identify alternatives.
5. Iterate, involving different people, different sources of metaphors, or different issues.

A practitioner-facilitator can use metaphors to create a space for understandings to emerge. A six-step process has been proposed:

1. Propose initial distinctions around metaphors and anticipate ways in which the distinctions can be meaningful.
2. Consider activities for jointly bringing forth and exploring metaphors (in workshops or on farm walks).
3. Consider activities to jointly juxtapose metaphors and consider what each metaphor implies and does not imply (a proxy for revealed and concealed aspects).
4. Revisit the distinctions around metaphors and propose further distinctions around judging metaphors, choosing between metaphors, and dominant and reified metaphors.
5. Consider activities to facilitate processes of ‘moving between metaphors’.
6. Iterate steps 1 to 5.

Metaphorical inquiry can also be used to explore theoretical entailments of propositions, projects, policies etc. (Ison et al., 2013a; 2015). For example, in work reported in Ison (2002) when policy makers responsible for a new ‘knowledge transfer strategy’ were engaged through a process of exploring their metaphors in use.

Social learning

For many years now there has been concern about stakeholder participation in R&D. This is a genuine concern but unfortunately
many participatory approaches have been poorly managed or have
not been judged effective by those involved (High et al., 2008). Based
on my own experiences I have come to the view that participation is
a necessary but not sufficient ingredient of systemic, co-evolutionary
practices (Ison et al., 2006). For this reason we have turned our attention
to social learning. As outlined by Collins & Ison (2009b) ‘while the
‘social’ in social learning refers to the collective process that can take
place through interactions among multiple interdependent stakeholders
who are given proper facilitation, institutional support and a conducive
policy environment, the findings of the SLIM project suggest that social
learning can be understood as one or all of the following (adapted from
SLIM, 2004):

1. The accommodation of differences as to what is at issue amongst
multiple actors in a situation of concern leading to articulated
mutual expectations and the building of relational capital. If social
learning is at work, then convergence in perspective and relational
capital generate agreement on concerted action for managing
complex natural resource issues. Social learning may thus result in
sustainable resource use.

2. The process of co-creation of knowledge, which provides insight
into the causes of, and the means required to transform, a situation.
Social learning is thus an integral part of the make-up of concerted
action.

3. The change of behaviors and actions resulting from understanding
something through action (‘knowing’) and leading to concerted
action. Social learning is thus an emergent property of the process
to transform a situation.’

4 The title for a governance mechanism which policy makers can
employ.

Social learning, like a good concert orchestra, is about creating an
effective performance amongst multiple stakeholders. The key need
social learning addresses, is: how can effective performances amongst
multiple stakeholders in situations usefully framed as ‘wicked problem’
situations be orchestrated? This involves the transformation of complex
situations to improved situations through changes in understanding and
practices of those involved (Figure 6).

1 Social Learning for the Integrated Managing and sustainable use of water at catchment
scale, a EU-funded framework project.
Situations characterized by complexity, uncertainty interdependencies, multiple stakeholders and thus perspectives can be transformed through concerted action by stakeholders who build their stakeholding and relational capital in the process. This leads to changed understandings (knowledge in action) and practices ($S = \text{situation}$; S_1, not in the figure refers, to the history of the current situation, S_2, transformed through joint action to S_3 etc.).

Systems-based social learning research provides one of the few theoretical and praxis frameworks capable of dealing with ‘wicked problem’ challenges such as climate change adaptation and the global water crisis. This is an area for further research; we need to better understand how social learning and systemic approaches can be introduced and sustained so that they effect ongoing social and institutional transformations that are viable (Colvin et al., 2014; Ison et al., 2014a).

Systemic inquiry – an antidote to living in a ‘projectified world’

Systemic inquiry is a particular means of facilitating movement towards social learning (see above). It can be seen as a meta-platform or process for ‘project or program managing’ in that it has a focus on (i) understanding situations in context and especially the history of the situation; (ii) addressing questions of purpose; (iii) clarifying and distinguishing ‘what’ from ‘how’ as well as addressing ‘why’; (iv) facilitating action that is purposeful and which is systemically desirable and culturally feasible and (v) developing a means to orchestrate practices across space and time which continue to address a phenomenon
or phenomena of social concern when it is unclear at the start as to what would constitute an improvement. We have used systemic inquiry as a basis for a research contract with the Environment Agency (England & Wales) and as a conceptual model of how to structure and evaluate our research activities in a context that is dynamic, uncertain and with many interdependencies (see Collins, Ison & Blackmore, 2005; Collins and Ison, 2010; Ison, 2010). In research from 2003-8 with the Environment Agency in the UK, responsible for implementing river basin planning within the European Water Framework Directive we found the use of particular project management methods (e.g. PRINCE2) to seriously constrain social learning and the systemic appreciation of what had to be done. Contemporary projects are designed for certainty, regularity, and the mistaken belief that all ‘wicked problems’ can be tamed within a project.

Systemic inquiry builds on, and extends Churchman’s (1971) epistemological assumptions; it is concerned with the design of inquiring (or learning) systems and is grounded in various traditions of systems scholarship including second-order cybernetics and applied systems studies (Ison et al., 2007). Churchman (1971) addressed the design of inquiring systems. He reflected that the tendency, then prevalent, was to bolster science and its research as the paradigmatic exemplar of an inquiring system. He rejected this and observed that ‘…reflective learning in the literal sense… is the thinking about thinking, doubting about doubting, learning about learning, and (hopefully), knowing about knowing’ (p. 17). He defined ‘inquiry’ as an activity which produces knowledge (p. 8); put another way inquiry facilitates a particular way of knowing which, when enacted, makes a difference. As Churchman (1971) observed, when exploring the metaphor of a ‘library of science’, the common definition of science as a systematic collection of knowledge is ‘almost entirely useless for the purposes of designing inquiring systems… in other words knowledge resides in the user not in the collection… it is how the user reacts to the collection …that matters’ (p. 10).

Systemic inquiry is an approach to managing complexity which is adaptive to changing circumstances and which draws explicitly on understandings of systems thinking, action research, cooperative inquiry and adaptive management. It is a key element of doing systemic development through which particular transformations – personal, social, situational – are realized (Ison et al., 2007). There is still much more to be done however in understanding how best to set up and institutionalize ‘systemic inquiries’ and to develop the praxis skills that are necessary to make them effective.
Contemporary systems thinking in practice (STiP) as a praxis foundation

The four practices outlined above rest conceptually and practically on contemporary systems theory as elucidated in Ison (2010). More precisely my work draws on both systems and cybernetics intellectual traditions which I call ‘cyber-systemics’. It is not possible here to do justice to the recent literature in this field but for a French-oriented international audience I wish to draw attention to some important distinctions that now inform parts of the Anglo-Saxon cyber-systemics community. Drawing on the works of Checkland (1999) and earlier theorists such as Churchman (1971) with roots back to pragmatic philosophy, especially Dewey, as well as Husserl’s phenomenology (Checkland, 1981) two distinct lineages can be discerned in both the systems and cybernetics fields. I refer to these as the systemic and systematic traditions (Figure 7; Ison, 2008b; Ison, 2010).

Figure 7. The systemic and systematic traditions understood as a duality, a totality

Source: Adapted from Ison, 2010.

Those with commitments to a systemic lineage appreciate that systems are brought forth by someone in a context as an epistemological device for learning about a situation of concern – where transformation is desired. Within this lineage a practitioner, or practitioners, make a framing choice to engage with a situation systemically through the generation of systems
as epistemological devices. In doing this a boundary judgment (to the system of interest) is made that distinguishes a system from a context (or environment) realizing not a thing called ‘system’ but a system – environment relationship mediated by a boundary judgment. Further, epistemologically aware cyber-systemicists understand that they can choose to act as if systems were real, discoverable, describable etc. In this case epistemological awareness and pluralism opens up more choices for practitioners concerned with situational transformation than does praxis committed knowingly or not to seeing systems as ontologies – things in the world. Similar understandings shape practitioner reflexivity in intellectual communities that are sometimes referred to as second (in contrast to first) order cybernetics.

Implications for sustainable development research praxis and nature-science relationships

Part of my purpose with this paper was to create the circumstances for readers to reflect upon what it is that they do when they do what they do. This inward look is far too rare in science and technology organisations (Ison et al., 2014c). As I remarked earlier it is much easier to look outside ourselves. When we look we see across the globe many current or recent examples of systemic failure or issues that need to be addressed systemically. These include: (i) the Global Financial Crisis; (ii) the spread of Ebola; (iii) the lack of a global agreement on climate change; (iv) the rise of Islamic State in Iraq and Syria. There are undoubtedly more. Not all would agree that these are examples of systemic failure, suggesting that most are usefully framed as ‘wicked’ or ‘super wicked’ problems’ (Levin et al., 2012). I would suggest there are at least seven transformational challenges that need to be addressed to overcome systemic failure in doing what we do. These include: (i) widespread lack of epistemic awareness in domains of practice and policy development; (ii) a lack of awareness of the implications of living in language; (iii) inappropriate measures of performance for systems of interest (e.g. GDP understood as measure of performance for nation states – see Buchanan, 2013); (iv) little awareness of the implications of reification – the creation of ‘things’ such as the environment, resources, systems etc.; (v) lack of congruence between what is espoused and what others experience in individual and group practice; (vi) failures to institutionalize systems understandings and practices in manners that create demand pull and sustain institutionalization; and (vii) a focus on scientism at the expense of design (Metcalf, 2014).

Maturana and Varela (1987) argue that the transformation of our way of ‘seeing’ is a vital prerequisite for ‘doing’ things differently, because what we do in this world essentially reflects the way we ‘see’ or construe
situations and phenomena in it. Wider appreciation of this aspect of the human condition is needed; it could be argued that it is the primary concern of research praxis for sustainable development because the contemporary issues we humans face, and the incidence of systemic failure, suggest that in doing what we do there is no longer room to do the wrong thing righter! Evidence shows that science and technology can exacerbate complexity and uncertainty rather than ameliorating (Hubert and Ison, 2011).

Conceptualizing innovation for sustainable development as a systemic co-evolutionary domain is a means to acknowledge the inherent uncertainty, complexity, interrelatedness, multiple stakeholdings and thus perspectives present in research situations. To frame situations in this way is a choice we can make. This strengthens a case for considering the understandings and practices that give rise to the praxiologies I have outlined in this paper. However, undertaking these shifts involves abandoning certainty (the search for a nineteenth century appreciation of ‘objectivity’) and being open to inquiry and surprise. This is difficult for many. A temptation is to reach for a new theory or set of explanations, such as some of those proffered under the guise of complexity science, in the belief that they offer a new form of certainty (Ison & Schindwein, 2006). This should be avoided unless they are deployed to widen a praxis repertoire.

Systems thinking in practice (STiP) which attends to perspectives, multiple partial views, assumptions, framings, traps…and much more…still has much to contribute – I hope NSS, through this book, and its continuing activity can facilitate communications across the cultural and epistemological divides that characterize so much research praxis and which constrains reflexive innovation and transformation.

Acknowledgements

My work has been particularly enriched by insights from, and conversations with, Humberto Maturana, Pille Bunnell, David Russell, Richard Bawden and Peter Checkland as well as the many colleagues and students with whom I have co-inquired. I thank Bernard Hubert for his sustained friendship and introduction into the NSS community and Sylvie Zasser for the quality of her ongoing editorial support.

Bibliography

Ampt, P.R., Problem identification for agronomic research: an evaluation of RRA, University of Sydney, Unpublished MScAgr Thesis, 1993.

Transforming nature-society relations through innovations in research praxis

Ison, R.L., “Traditions of understanding: language, dialogue and experience”, in Meg Keen, Valerie A. Brown & Rob Dyball (eds.), *Social Learning*
Interdisciplinarités entre Natures et Sociétés

