Copy the page URI to the clipboard
Hodgkins, Richard; Bryant, Robert; Darlington, Eleanor and Brandon, Mark
(2016).
DOI: https://doi.org/10.1017/aog.2016.20
Abstract
High-latitude atmospheric warming is impacting freshwater cycling, requiring techniques for monitoring the hydrology of sparsely-gauged regions. The submarine runoff of tidewater glaciers presents a particular challenge. We evaluate the utility of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for monitoring turbid meltwater plume variability in the glacier lagoon Jökulsárlón, Iceland, for a short interval before the onset of the main melt season. Total Suspended Solids concentrations (TSS) of surface waters are related to remotely-sensed reflectance via empirical calibration between in-situ-sampled TSS and reflectance in a MODIS band 1-equivalent wavelength window. This study differs from previous ones in its application to an overturning tidewater glacier plume, rather than one derived from river runoff. The linear calibration improves on previous studies by facilitating a wider range of plume metrics than areal extent, notably pixel-by-pixel TSS values. Increasing values of minimum plume TSS over the study interval credibly represent rising overall turbidity in the lagoon as melting accumulates. Plume extent responds principally to consistently-strong offshore winds. Further work is required to determine the temporal persistence of the calibration, but remote plume observation holds promise for monitoring hydrological outputs from ungauged or ungaugeable systems.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 46177
- Item Type
- Journal Item
- ISSN
- 1727-5644
- Keywords
- tidewater glacier; glacier; Iceland; MODIS; Total Suspended Solids; satellite; remote sensing; glacier plume; plume
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2016 The Authors
- Depositing User
- Mark Brandon