Diode-switched thermal-transfer printed antenna on flexible substrate

How to cite:

For guidance on citations see FAQs

© 2016 Institution of Engineering and Technology
Version: Accepted Manuscript
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1049/el.2015.3060
http://dx.doi.org/10.1049/el.2015.3060

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Diode-switched thermal-transfer printed antenna on flexible substrate

M. Kgwadi and T. D. Drysdale

We demonstrate that diode-switching can be used to introduce frequency agility into antennas produced by thermal transfer printing. Our particular example is a triangular Sierpinski fractal pattern with two PIN diodes to switch between operation optimised for the 800 MHz UHF band (diodes off) and the 2400 MHz ISM band (diodes on). Our measured results show an improvement in S_{11} in the UHF band from -2 dB to -28 dB, and from -7 dB to -30 dB at 2400 MHz, when switching the diodes appropriately. The measured bandwidth is 200 (1000) MHz, and the measured directivity is 3.1 dB (5.2 dB) while the measured gain is -5.2 dB (6.7 dB) for the diodes on/off.

Introduction: Rapid and inexpensive antenna manufacturing is required to support the burgeoning interest in the Internet of Things (IoT). IoT is heavily reliant upon wireless communications between, ultimately, trillions of devices [1]. For any IoT antenna, it is important to be able to handle a dynamic frequency allocation, at least in part determined by regulatory authorities according to location [2] but also influenced by the local propagation environment favouring some channels over others due to fading mechanisms associated with building geometry e.g. [3] and other radio noise sources. Hence, reconfigurable antennas are attractive both for prototyping IoT communications networks in new locations, but also during deployment for responding to changes in the optimal channel choice. Reconfigurable antennas often require less non-returnable engineering effort compared to designing multi-band antennas, and can go further than frequency agility to include polarisation diversity [4] or beamforming capability [5]. Switching is known to introduce frequency [6] and polarisation [7] agility into planar antennas produced using conventional printed circuit board techniques on a variety of dielectric substrates. However, these manufacturing techniques are relatively slow compared to thermal transfer printing of metallic films, which prints at a rate of approximately 5cm/s and requires no curing to reach maximum sheet resistance [8]. Flexible substrates give IoT system designers more options for integrating nodes unobtrusively into built environments [9].

Antenna design and implementation: An IoT antenna needs to be able to switch between two or more different bands depending on spectrum allocation from regulatory authorities, spectrum availability due to other users, or deleterious effects in the local propagation environment. A sequentially reconfigurable frequency agile Sierpinski antenna using RF micro-electro-mechanical systems (RF MEMS) switches was achieved in [10]. The RF MEMS in [10] require DC bias voltage of up to 17 V to achieve switching, which may not be cost effective in low power sensor nodes. Therefore PIN diodes are an attractive alternative for our approach because they can be switched with voltages lower than 1 V DC (nominal value 0.95 V) [11]. We propose a Sierpinski gasket-based tunable antenna using NXP semiconductor’s general purpose PIN diodes (BAP50-05) as switches, so as to allow a sensor node to switch between ISM band (2400 MHz) communications and the television white space (TVWS) bands centered at (800 MHz) by using a flexible, low-cost frequency agile antenna. Thus an associated sensor node could switch between the two frequency bands depending on availability and/or network traffic conditions. Figure 1(a) shows a schematic of our design, with a photograph of the final printed version shown in Figure 1(b). The antenna was printed using thermal-transfer printing by a Zebra S4 300 dpi, on a Flexcon THERMfilm® SELECT 21944E which is a polyester with relative dielectric constant (ε_r) of 3.2 [8]. The metalization was achieved by IMAK’s Metallograph™ conductive thermal transfer ribbon which yields a 260 nm aluminium layer. The antenna is switched between the ‘ON’ and ‘OFF’ state by switch S via a voltage supply fed through the vector network analyser DC-bias port. On a microcontroller-based sensor node, the same can be achieved by programming one of the output pins. For a 3.3 V output pin voltage, a 47 Ω resistor in series with the PIN diode will be required to obtain the required forward bias current of 50 mA. In the ‘ON’ state the diodes are forward biased and the whole of the antenna is in operation, resonating at 800 MHz. In the ‘OFF’ state the diodes are at zero bias and the antenna elements beyond the cathodes of the diodes are effectively disconnected, yielding a shorter antenna that resonates at 2400 MHz. In practice, some residual loading remains because the diode is not a perfect open circuit. Two surface-mount inductors are used to isolate the RF signal from the ground.

Simulation and measurements: The antenna was simulated in openEMS which is an open source, finite-difference time-domain based electromagnetic field solver [12]. The metallisation was modelled as a perfect electrical conductor of infinitesimal thickness to give reasonable simulation times. This does not affect the radiation pattern or operating frequency but prevents us from predicting the efficiency. Lumped components were used to model the PIN diodes and inductors in the simulations. The reverse bias capacitance of the diodes was modelled as a 0.4 pF lumped capacitor in the ‘OFF’ state, while the forward bias resistance was modelled as a 3 Ω lumped resistor in the ‘ON’ state. The inductor was modelled as lumped 4.7 uH inductance in series with a 3 Ω resistance. Figure 2(a) shows the simulated reflection coefficient in the two cases when the diodes are ‘ON’ and ‘OFF’. Figure 2(b) shows the measured S_{11}, with the desired resonance in the ISM band (WLAN, 2400-2500 MHz) with an S_{11} better than -30 dB through the entire band and no resonance at 800 MHz in the ‘OFF’ state. In the ‘ON’ state, the resonance in UHF band is observed at 370 MHz with an S_{11} of -28 dB and operational bandwidth of 200 MHz ($S_{11} \leq -10$ dB). The 150 MHz shift in the resonance frequency between simulation and measurements is attributed to discretization of the diagonal lines into a staircase approximation and the presence of a 56 μm glassine liner which preserves the acrylic adhesive and thus makes the structure electrically larger than simulated (hence the resonances shifts to the lower frequencies).
The glassline, whose dielectric permittivity is unknown to us, was omitted in the simulations since it is expected to be peeled off during antenna deployment. Our measured results are sufficient to demonstrate the principle, although we would expect some fine tuning to the design would be needed to take into account the precise conditions under which it was manufactured in volume.

Figure 3 shows the normalised current distribution in both ‘ON’ and ‘OFF’ cases at the two design frequencies. In the ‘OFF’ state the current density at 800 MHz is limited to the lower part of the antenna as shown in Figure 3(a). The current distribution at 2400 MHz shown Figure 3(b) shows a higher intensity in the active part of the antenna compared to 800 MHz in Figure 3(a) signifying resonance. Some currents also appear on the inactive part of the antenna in the ‘OFF’ state, due to fringing capacitance. In the ‘ON’ state, the 800 MHz current is distributed through the whole antenna as shown in Figure 3(c) and shows higher intensity than in the ‘OFF’ state. This shows the antenna resonating at 800 MHz in the ‘ON’ state. Figure 3(d) shows the current distribution at 2400 MHz.

The radiation pattern was measured using an NSI 2000 near field spherical scanner in a 4.5x4.5x4.0 m anechoic chamber. The normalized simulated far-field radiation patterns for 800 MHz (‘ON’) and 2400 MHz (‘OFF’) are shown in Figure 4(a) and Figure 4(b) respectively. The corresponding normalized measured far-field radiation patterns at 800 MHz (‘ON’) and 2400 MHz (‘OFF’) are shown in Figure 4(c) and Figure 4(d) respectively. The measured radiation patterns in the ‘ON’ state are omnidirectional with a measured gain of -5.3 dBi and a directivity of 3.1 dB at 800 MHz. The low measured gain is attributed to the conductor capacitance. In the ‘OFF’ state, the 800 MHz current is distributed through the whole antenna as shown in Figure 4(c) and shows higher intensity than in the ‘OFF’ state. This shows the antenna resonating at 800 MHz in the ‘ON’ state. Figure 4(d) shows the measured far-field radiation patterns at 2400 MHz in the ‘ON’ state, (b) 2400 MHz in the ‘OFF’ state, (c) 800 MHz in the ‘ON’ state, and (d) measured radiation pattern in the ‘OFF’ state at 2400 MHz. The arrow marks a null caused by the bias line.

Acknowledgement: We would like to thank IIMAK for donating the Metallograph conductive ribbon.

M. Kgwadi (Division of Electronics and Nanoscale Engineering, University of Glasgow, Glasgow, G12 8LT, UK.)
T. D. Drysdale (Department of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, UK.)
E-mail: timothy.d.drysdale@ieee.org

References

