Calikli, Gul; Law, Mark; Bandara, Arosha K.; Russo, Alesandra; Dickens, Luke; Price, Blaine A.; Stuart, Avelie; Levine, Mark and Nuseibeh, Bashar
(2016).
|
PDF (Accepted Manuscript)
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview |
URL: | http://seams2016.jgreen.de/?page_id=35 |
---|---|
DOI (Digital Object Identifier) Link: | https://doi.org/10.1145/2897053.2897063 |
Google Scholar: | Look up in Google Scholar |
Abstract
Privacy violations in online social networks (OSNs) often arise as a result of users sharing information with unintended audiences. One reason for this is that, although OSN capabilities for creating and managing social groups can make it easier to be selective about recipients of a given post, they do not provide enough guidance to the users to make informed sharing decisions. In this paper we present Privacy Dynamics, an adaptive architecture that learns privacy norms for different audience groups based on users’ sharing behaviours. Our architecture is underpinned by a formal model inspired by social identity theory, a social psychology framework for analysing group processes and intergroup relations. Our formal model comprises two main concepts, the group membership as a Social Identity (SI) map and privacy norms as a set of conflict rules. In our approach a privacy norm is specified in terms of the information objects that should be prevented from flowing between two conflicting social identity groups. We implement our formal model by using inductive logic programming (ILP), which automatically learns privacy norms. We evaluate the performance of our learning approach using synthesised data representing the sharing behaviour of social network users.
Item Type: | Conference or Workshop Item | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Copyright Holders: | 2016 Association of Computing Machinery | |||||||||
ISBN: | 1-4503-4187-X, 978-1-4503-4187-5 | |||||||||
Project Funding Details: |
|
|||||||||
Academic Unit/School: | Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications Faculty of Science, Technology, Engineering and Mathematics (STEM) |
|||||||||
Research Group: | Centre for Research in Computing (CRC) International Development & Inclusive Innovation International Centre for Comparative Criminological Research (ICCCR) |
|||||||||
Item ID: | 45951 | |||||||||
Depositing User: | Arosha Bandara | |||||||||
Date Deposited: | 06 Apr 2016 15:32 | |||||||||
Last Modified: | 20 Dec 2017 16:53 | |||||||||
URI: | http://oro.open.ac.uk/id/eprint/45951 | |||||||||
Share this page: | ![]() ![]() ![]() ![]() |
Metrics
Altmetrics from Altmetric | Citations from Dimensions |
Download history for this item
These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.