The Open UniversitySkip to content
 

Modelling complex systems of heterogeneous agents to better design sustainability transitions policy

Mercure, Jean-Francois; Pollitt, Hector; Bassi, Andrea M.; Viñuales, Jorge E. and Edwards, Neil R. (2016). Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Global Environmental Change, 37 pp. 102–115.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.gloenvcha.2016.02.003
Google Scholar: Look up in Google Scholar

Abstract

This article proposes a fundamental methodological shift in the modelling of policy interventions for sustainability transitions in order to account for complexity (e.g. self-reinforcing mechanisms, such as technology lock-ins, arising from multi-agent interactions) and agent heterogeneity (e.g. differences in consumer and investment behaviour arising from income stratification). We first characterise the uncertainty faced by climate policy-makers and its implications for investment decision-makers. We then identify five shortcomings in the equilibrium and optimisation-based approaches most frequently used to inform sustainability policy: (i) their normative, optimisation-based nature, (ii) their unrealistic reliance on the full-rationality of agents, (iii) their inability to account for mutual influences among agents (multi-agent interactions) and capture related self-reinforcing (positive feedback) processes, (iv) their inability to represent multiple solutions and path-dependency, and (v) their inability to properly account for agent heterogeneity. The aim of this article is to introduce an alternative modelling approach based on complexity dynamics and agent heterogeneity, and explore its use in four key areas of sustainability policy, namely (1) technology adoption and diffusion, (2) macroeconomic impacts of low-carbon policies, (3) interactions between the socio-economic system and the natural environment, and (4) the anticipation of policy outcomes. The practical relevance of the proposed methodology is subsequently discussed by reference to four specific applications relating to each of the above areas: the diffusion of transport technology, the impact of low-carbon investment on income and employment, the management of cascading uncertainties, and the cross-sectoral impact of biofuels policies. In conclusion, the article calls for a fundamental methodological shift aligning the modelling of the socio-economic system with that of the climatic system, for a combined and realistic understanding of the impact of sustainability policies.

Item Type: Journal Item
Copyright Holders: 2016 The Authors
ISSN: 0959-3780
Keywords: Environmental policy assessment; Climate change mitigation; Complexity sciences; Behavioural sciences
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: International Development & Inclusive Innovation
Item ID: 45653
Depositing User: Neil Edwards
Date Deposited: 14 Mar 2016 15:50
Last Modified: 30 May 2019 20:06
URI: http://oro.open.ac.uk/id/eprint/45653
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU