The Open UniversitySkip to content
 

Clustering of the AKARI NEP deep field 24μm selected galaxies

Solarz, A.; Pollo, A.; Takeuchi, T. T.; Małek, K.; Matsuhara, H.; White, G. J.; Pȩpiak, A.; Goto, T.; Wada, T.; Oyabu, S.; Takagi, T.; Ohyama, Y.; Pearson, C. P.; Hanami, H.; Ishigaki, T. and Malkan, M. (2015). Clustering of the AKARI NEP deep field 24μm selected galaxies. Astronomy & Astrophysics, 582 A58.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1051/0004-6361/201423370
Google Scholar: Look up in Google Scholar

Abstract

Aims. We present a method of selection of 24 μm galaxies from the AKARI north ecliptic pole (NEP) deep field down to 150 μJy and measurements of their two-point correlation function. We aim to associate various 24 μm selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution.

Methods. We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter (r0) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions.

Results. We observe two different populations of star-forming galaxies, at zmed ∼ 0.25, zmed ∼ 0.9. Measurements of total infrared luminosities (LTIR) show that the sample at zmed ∼ 0.25 is composed mostly of local star-forming galaxies, while the sample at zmed ∼ 0.9 is composed of luminous infrared galaxies (LIRGs) with LTIR ∼ 1011.62 L. We find that dark halo mass is not necessarily correlated with the LTIR: for subsamples with LTIR = 1011.15 L at zmed ∼ 0.7 we observe a higher clustering length (r0 = 6.21 ± 0.78 [h−1Mpc]) than for a subsample with mean LTIR = 1011.84 L at zmed ∼ 1.1 (r0 = 5.86 ± 0.69 h−1Mpc). We find that galaxies at zmed ∼ 0.9 can be ancestors of present day L early type galaxies, which exhibit a very high r0 ∼ 8h−1 Mpc.

Item Type: Journal Item
Copyright Holders: 2015 Astronomy & Astrophysics
ISSN: 0004-6361
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Related URLs:
Item ID: 45580
Depositing User: G. J. White
Date Deposited: 16 Mar 2016 09:58
Last Modified: 25 Jun 2019 01:22
URI: http://oro.open.ac.uk/id/eprint/45580
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU