The Open UniversitySkip to content
 

The peculiar radio galaxy 4C 35.06: a case for recurrent AGN activity?

Shulevski, A.; Morganti, R.; Barthel, P. D.; Murgia, M.; van Weeren, R. J.; White, G. J.; Brüggen, M.; Kunert-Bajraszewska, M.; Jamrozy, M.; Best, P. N.; Röttgering, H. J. A.; Chyzy, K. T.; de Gasperin, F.; Bîrzan, L.; Brunetti, G.; Brienza, M.; Rafferty, D. A.; Anderson, J.; Beck, R.; Deller, A.; Zarka, P.; Schwarz, D.; Mahony, E.; Orrú, E.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Butcher, H. R.; Carbone, D.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Heald, G.; Hoeft, M.; Hörandel, J.; Horneffer, A.; van der Horst, A. J.; Intema, H.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McFadden, R. and McKay-Bukowski, D. (2015). The peculiar radio galaxy 4C 35.06: a case for recurrent AGN activity? Astronomy & Astrophysics, 579, article no. A27.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1051/0004-6361/201425416
Google Scholar: Look up in Google Scholar

Abstract

Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~ 4″), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~ 30″), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The outermost regions of radio emission have a steep spectral index (α< − 1), indicative of old plasma. We connect the spectral index properties of the resolved source structure with the integrated fluxdensity spectral index of 4C 35.06 and suggest an explanation for its unusual integrated flux density spectral shape (a moderately steep power law with no discernible spectral break), possibly providing a proxy for future studies of more distant radio sources through inferring their detailed spectral index properties and activity history from their integrated spectral indices. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it is intermittently active as it moves in the dense environment in the cluster core. In this scenario, the AGN turned on sometime in the past, and has produced the helical pattern of emission, possibly a sign of jet precession/merger during that episode of activity. Using LOFAR, we can trace the relic plasma from that episode of activity out to greater distances from the core than ever before. Using the the WSRT, we detect H I in absorption against the center of the radio source. The absorption profile is relatively broad (FWHM of 288 kms-1), similar to what is found in other clusters. The derived column density is NHI ~ 4 × 1020 cm-2 for a Tspin = 100 K. This detection supports the connection – already suggested for other restarted radio sources – between the presence of cold gas and restarting activity. The cold gas appears to be dominated by a blue-shifted component although the broad H I profile could also include gas with different kinematics. Understanding the duty cycle of the radio emission as well as the triggering mechanism for starting (or restarting) the radio-loud activity can provide important constraints to quantify the impact of AGN feedback on galaxy evolution. The study of these mechanisms at low frequencies using morphological and spectral information promises to bring new important insights in this field.

Item Type: Journal Item
Copyright Holders: 2015 ESO
ISSN: 1432-0746
Keywords: radio continuum: galaxies; galaxies: active; radio lines: galaxies; galaxies: individual: 4C 35.06
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Related URLs:
Item ID: 45578
Depositing User: G. J. White
Date Deposited: 15 Mar 2016 10:29
Last Modified: 24 Jun 2019 18:56
URI: http://oro.open.ac.uk/id/eprint/45578
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU