Extreme warming of tropical waters during the Paleocene-Eocene Thermal Maximum

How to cite:

For guidance on citations see FAQs.

© 2014 Geological Society of America

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1130/G35637.1

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum

T. Aze1,2*, P.N. Pearson1, A.J. Dickson3†, M.P.S. Badger4, P.R. Bown5, R.D. Pancost4, S.J. Gibbs6, B.T. Huber7, M.J. Leng8, A.L. Coe3, A.S. Cohen3, and G.L. Foster6

1School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
2Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
3Organic Geochemistry Unit, Cabot Institute, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
4Department of Earth Sciences, University College London, London WC1E 6BT, UK
5Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
6Smithsonian Institution, Department of Paleobiology, Washington, DC 20013-7012, USA
7Centre for Environmental Geochemistry, School of Geography, University of Nottingham, Nottingham NG7 2RD, UK, and NERC Isotope Geosciences Facilities, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

ABSTRACT

The Paleocene–Eocene Thermal Maximum (PETM), ca. 56 Ma, was a major global environmental perturbation attributed to a rapid rise in the concentration of greenhouse gases in the atmosphere. Geochemical records of tropical sea-surface temperatures (SSTs) from the PETM are rare and are typically affected by post-depositional diagenesis. To circumvent this issue, we have analyzed oxygen isotope ratios (δ18O) of single specimens of exceptionally well-preserved planktonic foraminifera from the PETM in Tanzania (~19°S paleolatitude), which yield extremely low δ18O, down to <−5‰. After accounting for changes in seawater chemistry and pH, we estimate from the foraminifer δ18O that tropical SSTs rose by >3 °C during the PETM and may have exceeded 40 °C. Calcareous plankton are absent from a large part of the Tanzania PETM record; extreme environmental change may have temporarily caused foraminiferal exclusion.

INTRODUCTION

During the Paleocene–Eocene Thermal Maximum (PETM), >2000 Gt of isotopically light carbon was released into the atmosphere in <60 k.y., possibly by the destabilization of deep-sea methane hydrates (Dickens, 2011) or soil organic carbon within permafrost (DeConto et al., 2012). The carbon release caused a substantial negative carbon isotope (δ13C) excursion (CIE), the magnitude of which remains uncertain (e.g., Zachos et al., 2005). The PETM was associated with globally averaged warming estimated to be >5 °C (Dunkley Jones et al., 2013). The absorption of such large quantities of carbon into the ocean resulted in a lowering of oceanic pH and a shauling of the calcium carbonate compensation depth (Zachos et al., 2005). Records of tropical sea-surface temperatures (SSTs) from calcareous organisms are rare, as deep-sea sediments commonly have poor microfossil preservation (Zachos et al., 2007). The PETM interval is sedimentologically complex, with fluctuating abundances of organic carbon and δ13C and δ18O foraminifera viewed as smear slides (Bown and Young, 1998), using microscopy in cross-polarized and phase-contrast light on rock surfaces using scanning electron microscopy (Lees et al., 2004). Count data were from more than five fields of view until ~400 specimens were counted.

Studying the ancient carbon cycle requires records of δ18O in planktonic foraminifera from the PETM. TDP-14 provided an exceptional opportunity to study the climate of the PETM because calcareous plankton were abundant there, and exceptionally well-preserved specimens were available. This paper presents δ18O data from ~900 specimens foraminifera from a ~18 m thick sedimentary section from the TDP-14 site in Tanzania that records the PETM interval. Data are compared to δ18O for other records, and δ18O is used to infer changes in tropical SSTs and δ18O of δ18O of carbon dioxide in the atmosphere.

METHODS

Sedimentological and Biotic Records

Deposits of the PETM in TDP-14 are ~11 m thick and are composed of mudstone, siltstone, and claystone with clay intercalations. The site is at ~19°S paleolatitude in the warm Angola Basin (van Dongen et al., 2006). The principal lithologies are claystone and siltstone, with excellent microfossil preservation (e.g., Bown and Pearson, 2009). The site’s distance to the continent (~70 km to the paleoshoreline; Kent et al., 1971) and shallow burial history mean that TDP-14 contains abundant well-preserved organic biomarkers (van Dongen et al., 2006).

RESULTS

Sedimentological and Biotic Records

Deposits of the PETM in TDP-14 are ~11 m thick. The base of the PETM interval is ~24 m below surface (mbs), as defined by the first occurrence of the excursion taxon Aca­rinina africana and a negative shift in δ13C (Fig. 1), along with lower δ18O and δ13C in single specimens of planktonic foraminifera (Fig. 1). The lower part of the PETM interval is sedimentologically complex, with fluctuating abundances of organic carbon and δ13C that likely reflect changes in the relative abundance of distinct sources of...
organic matter (Fig. 1). No mass transport features were observed in the core (Nicholas et al., 2006), but reworking, switching sources, or sediment mixing may account for this complexity. The pre-excursion sediments and reworked packets contain an abundant open-ocean planktonic foraminifer assemblage comprising more than 40 species (see the Data Repository).

Stratigraphic horizons containing excursion taxa commonly have low abundance (commonly <1 foraminifer/g) and diversity of planktonic foraminifera. Between ~24 and 19 mbs, planktonic foraminifer abundances fluctuate between pre-excursion levels and very low abundances, with a near complete absence of calcareous microfossils between ~18 and 13 mbs. Where planktonic foraminifer abundances are lowest, the CaCO₃ content drops to near zero (Fig. 1). Between 24 and 19 mbs (“mixed zone” in Fig. 1), levels with higher microfossil abundances and δ¹³C₅₆₆₆ are interpreted as dominated by transported pre-PETM sediments. The top of the PETM section is truncated by a hiatus (~13 mbs), and a rich and diverse microfossil assemblage returns higher in the core (13–10 mbs).

Geochemical Records

Single-specimen pre-PETM δ¹³C₀ values for mixed layer– and thermocline-dwelling species are typically ~4.9‰ (± 1.94‰, 2 standard deviations [SD]) and 1.5‰ (± 1.11‰, 2 SD), respectively (Figs. 1 and 2). Mean pre-PETM δ¹³C₀ values are ~3.3‰ for mixed layer– and ~2.7‰ for thermocline-dwelling species (Figs. 1 and 2). Two *Morozovella* specimens from within the CIE exhibit δ¹³C₀ lower than ~5‰. However, not all specimens that exhibit the lowest δ¹³C₀ also record the lowest δ¹³C₀ (see the Data Repository). Due to the complex stratigraphy at TDP-14, PETM and pre-PETM specimens occur in the same stratigraphic intervals, which makes an estimation of the true magnitude of the CIE from foraminiferal calcite problematic.

DISCUSSION

Sea-Surface Temperatures

To quantify paleo-SSTs, we explore variables that can impact estimates including (1) seawater δ¹⁸O (δ¹⁸O₀), (2) pH, and (3) the paleotemperature equation.

Figure 1. Stratigraphic log of Tanzania Drilling Project Site 14 (TDP-14) with geochemical and biotic records of the Paleocene–Eocene Thermal Maximum (PETM). Log records epoch, planktonic foraminiferal biozone (Berggren and Pearson, 2005), lithological variation (dashed gray is clay and silty clay, dotted gray is fine-grained sandstone), horizons sampled for assemblage analysis (dashes), and horizons containing “excursion taxa” (black circles). A: Assemblage data of mixed layer (red)– and thermocline (blue)–dwelling planktonic foraminifera and calcareous nannofossils (black diamonds) on a log scale from TDP-14B. B: Planktonic foraminifera δ¹³C from single specimens of the mixed-layer genus *Morozovella* (red squares) and *Acarinina* (orange circles) and thermocline genus *Subbotina* (light blue diamonds); also included are the multiple-specimen *Subbotina* data (blue triangles) from Handley et al. (2008) from TDP-14B (VPDB—Vienna Peedee belemnite). C: Planktonic foraminifera δ¹⁸O (symbols as in B). D: n-alkane δ¹³C data from TDP-14A (Handley et al., 2008) (open squares) and new data from this study between ~20 m and 24 m (gray circles). E: Bulk sediment weight percent CaCO₃. F: Bulk sediment weight percent organic carbon. G: Bulk sediment δ¹³C of organic carbon. Gray dashed lines at 24 m to ~13 m denote PETM interval, with mixed interval highlighted between 24 m and ~18 m. For further details of lithology of TDP-14, see Handley et al. (2012).
The changing carbonate ion concentration and decrease in pH associated with elevated CO₂ levels during the PETM may have resulted in higher δ¹³Cₕ and δ¹⁸Oₕ because of the “pH effect” (e.g., Spero et al., 1997). We have corrected for changes in the isotopic fractionation of oxygen due to potential pH shifts (Uchikawa and Zeebe, 2010) using the end-member values of pH decline for the PETM (−0.25 to −0.45) (cf. Höhisch et al., 2012) to inform our pH correction, resulting in SSTs that are higher by up to ~1.5 °C than uncorrected values.

Paleotemperature Equations

The paleotemperature equation of Kim and O’Neil (1997) is favored because it is the only one that is calibrated above 30 °C. For comparison, we have also applied the foraminifera equations of Erez and Luz (1983) and Bemis et al. (1998) (Table 1).

To explore the effects of the paleotemperature assumptions and equations outlined above, we calculated SSTs from single-specimen δ¹⁸Oforam of the mixed-layer planktonic foraminifer genus *Morozovella* using the mean pre-PETM, mean PETM, and lowest recorded PETM δ¹⁸Oforam (Table 1). Resulting PETM SSTs from TDP-14 range from ~28 °C to 43 °C. Model simulations suggest that PETM tropical SSTs could have reached ~35 °C (Huber and Caballero, 2011), but following corrections for both paleolatitude and ocean acidification, PETM SSTs at this site most likely reached between ~36 °C and 43 °C (Table 1; Fig. 2; see the Data Repository). The calculations suggest that prior to the CIE, SSTs were warmer than modern SSTs at equivalent latitudes, and that during the PETM, SSTs were significantly higher. The change in temperature using the mean background and mean CIE δ¹⁸Oforam is ~+3 °C (±0.5 °C). The lowest δ¹⁸Oforam values likely reflect maxima in seasonal warmth on a background of already high temperatures; this may explain the absence of significant temperature change recorded by thermocline species that were living at greater depths.

Plankton Assemblage Changes

The absence of calcareous plankton from much of the main PETM interval at TDP-14 may be due to dissolution, exclusion due to environmental stress (e.g., Kelly et al., 1996), or sedimentary dilution. Dissolution effects are unlikely as there is no increase in planktonic foraminifer fragmentation (Hemleben et al., 1989) prior to their

TABLE 1. PETM SEA-SURFACE TEMPERATURE (°C) ESTIMATES FROM TDP-14 BASED ON SINGLE-SPECIMEN MOROZOVELLA PLANKTONIC FORAMINIFERA δ¹⁸O VALUES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-PETM</td>
<td>PETM</td>
<td>Lowest δ¹⁸O</td>
</tr>
<tr>
<td>No latitude or pH correction</td>
<td>δ¹⁸O –3.38%</td>
<td>δ¹⁸O –4.04%</td>
<td>δ¹⁸O –5.14%</td>
</tr>
<tr>
<td>Latitude correction, no pH correction</td>
<td>25.0</td>
<td>28.2</td>
<td>33.5</td>
</tr>
<tr>
<td>Latitude correction, pH correction</td>
<td>30.0</td>
<td>32.2</td>
<td>37.5</td>
</tr>
<tr>
<td>Latitude correction, pH correction –0.25</td>
<td>N/A</td>
<td>33.9</td>
<td>39.2</td>
</tr>
<tr>
<td>Latitude correction, pH correction –0.45</td>
<td>N/A</td>
<td>35.2</td>
<td>40.5</td>
</tr>
</tbody>
</table>

Note: PETM—Paleocene—Eocene Thermal Maximum; TDP-14—Tanzania Drilling Project Site 14. The oxygen isotope fractionation equations of Bemis et al. (1998) (*Orbulina universa* high light), Erez and Luz (1983) (*Globigerinoides sacculifer*), and Kim and O’Neil (1997) (inorganic calcite) are used. Each equation is applied to the mean background δ¹⁸O value (~3.38%), the mean PETM δ¹⁸O value (~4.04%), and the lowest recorded PETM δ¹⁸O (~5.14%). Data are left uncorrected in row 1, corrected for paleolatitude in row 2 (Zachos et al., 1994), and corrected for paleolatitude and a pH shift (Uchikawa and Zeebe, 2010) of −0.25 and −0.45 in rows 3 and 4, respectively. The PETM pH corrections are not applied to the pre-PETM mean value.
disappearance, and where present, diminutive and fragile nannofossils are exceptionally well-preserved (Bown and Pearson, 2009).

Shelf PETM sections show increased sedimentation rates related to hydrological cycle changes (e.g., Sliujs et al., 2008), and this likely also happened in Tanzania (Handley et al. 2012) leading to decreased calcareous plankton concentrations. The complex stratigraphy and short core length hinder development of an age model that could determine whether the decline in calcareous plankton abundance is the result of sediment dilution. However, the reduction in planktonic foraminifer specimens per gram (s/g) before (average = 86 s/g) and during the peak of the CIE (average = 1 s/g) (Fig. 1) would require sedimentation rates to increase by a factor of ~80, whereas marine biomarker concentrations indicate a sedimentation increase by an order of magnitude less (~6; Handley et al., 2012). Hence, we suggest that the declines in foraminifer abundances represent exclusion due to environmental pressure in combination with sedimentary dilution. As “tropical” foraminifer assemblages appear in higher latitudes during the PETM (Kelly, 2002) and culture experiments demonstrate upper temperature tolerances of ~33 °C (Hemleben et al., 1989), extreme temperatures are likely to have been the principal environmental agent driving the ecological changes captured at TDP-14. The most extreme ecological conditions and the calcareous plankton exclusion occur higher in the core than the geochemical and biostratigraphic evidence for the onset of the CIE. This may reflect a slow response to the initial forcing, whereby planktonic populations were able to tolerate environmental change for a significant period of time before tolerance thresholds were breached.

SUMMARY

TDP-14 contains exceptionally well-preserved calcareous plankton, and although the stratigraphy is complex, a number of biotic and geochemical records document the environmental perturbation and biotic responses of the PETM at low latitudes. δ18O from some single-specimen planktonic foraminifera display low values (~5‰) and yield paleotemperatures in excess of 40 °C when corrected for paleolatitude and pH effects. A major decline in calcareous plankton abundance throughout the PETM interval likely represents exclusion due to environmental pressure in combination with sedimentary dilution. It is possible that SSTs near TDP-14 may have been even higher than have been inferred during the intervals of the PETM when foraminifera were absent.

ACKNOWLEDGMENTS

Aze and Pearson were supported by the DEFRA Ocean Acidification Programme and the Natural Environment Research Council (NERC; grant IP-1275-1111). Dickeron, Cohen, and Coe were supported by NERC grant NE/F021313/1. We thank A. Kuhl of the NERC Life Sciences Mass Spectrometry Facility for assistance with δ13C foraminifera and Pancost were supported by NERC.

REFERENCES CITED

Manuscript received 4 March 2014 Revised manuscript received 3 June 2014 Manuscript accepted 3 June 2014 Printed in USA