The Open UniversitySkip to content
 

Automated detection of reflection in texts. A machine learning based approach

Ullmann, Thomas Daniel (2015). Automated detection of reflection in texts. A machine learning based approach. PhD thesis The Open University.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview
Google Scholar: Look up in Google Scholar

Abstract

Promoting reflective thinking is an important educational goal. A common educational practice is to provide opportunities for learners to express their reflective thoughts in writing. The analysis of such text with regard to reflection is mainly a manual task that employs the principles of content analysis.

Considering the amount of text produced by online learning systems, tools that automatically analyse text with regard to reflection would greatly benefit research and practice.

Previous research has explored the potential of dictionary-based approaches that automatically map keywords to categories associated with reflection. Other automated methods use manually constructed rules to gauge insight from text. Machine learning has shown potential for classifying text with regard to reflection-related constructs. However, not much is known of whether machine learning can be used to reliably analyse text with regard to the categories of reflective writing models.

This thesis investigates the reliability of machine learning algorithms to detect reflective thinking in text. In particular, it studies whether text segments from student writings can be analysed automatically to detect the presence (or absence) of reflective writing model categories.

A synthesis of the models of reflective writing is performed to determine the categories frequently used to analyse reflective writing. For each of these categories, several machine learning algorithms are evaluated with regard to their ability to reliably detect reflective writing categories.

The evaluation finds that many of the categories can be predicted reliably. The automated method, however, does not achieve the same level of reliability as humans do.

Item Type: Thesis (PhD)
Copyright Holders: 2015 Thomas Daniel Ullmann
Keywords: discourse analysis; grading and marking; thought and thinking; reflection (philosophy)
Academic Unit/School: Learning and Teaching Innovation (LTI) > Institute of Educational Technology (IET)
Learning and Teaching Innovation (LTI)
Item ID: 45402
Depositing User: Thomas Ullmann
Date Deposited: 04 Mar 2016 14:20
Last Modified: 02 May 2018 14:17
URI: http://oro.open.ac.uk/id/eprint/45402
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU