The Open UniversitySkip to content

Electron multiplication CCD detector technology advancement for the WFIRST-AFTA coronagraph

Harding, Leon K.; Demers, Richard T.; Hoenk, Michael; Peddada, Pavani; Nemati, Bijan; Cherng, Michael; Michaels, Darren; Loc, Anthony; Bush, Nathan; Hall, David; Murray, Neil; Gow, Jason; Burgon, Ross; Holland, Andrew; Reinheimer, Alice; Jorden, Paul R. and Jordan, Douglas (2015). Electron multiplication CCD detector technology advancement for the WFIRST-AFTA coronagraph. In: Techniques and Instrumentation for Detection of Exoplanets VII (Shaklan, Stuart ed.), Proceedings of SPIE, SPIE Press, article no. 96050F.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (5MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


The WFIRST-AFTA (Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset) is a NASA space observatory. It will host two major astronomical instruments: a wide-field imager (WFI) to search for dark energy and carry out wide field near infrared (NIR) surveys, and a coronagraph instrument (CGI) to image and spectrally characterize extrasolar planets. In this paper, we discuss the work that has been carried out at JPL in advancing Electron Multiplying CCD (EMCCD) technology to higher flight maturity, with the goal of reaching a NASA technology readiness level of 6 (TRL-6) by early-to-mid 2016. The EMCCD has been baselined for both the coronagraph's imager and integral field spectrograph (IFS) based on its sub-electron noise performance at extremely low flux levels - the regime where the AFTA CGI will operate. We present results from a study that fully characterizes the beginning of life performance of the EMCCD. We also discuss, and present initial results from, a recent radiation test campaign that was designed and carried out to mimic the conditions of the WFIRST-AFTA space environment in an L2 orbit, where we sought to assess the sensor's end of life performance, particularly degradation of its charge transfer efficiency, in addition to other parameters such as dark current, electron multiplication gain, clock induced charge and read noise.

Item Type: Conference or Workshop Item
Copyright Holders: 2015 Unknown
ISBN: 1-62841-771-4, 978-1-62841-771-5
ISSN: 0277-786X
Keywords: EMCCD; WFIRST-AFTA; radiation damage
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Centre for Electronic Imaging (CEI)
Related URLs:
Item ID: 45137
Depositing User: David Hall
Date Deposited: 18 Jan 2016 14:37
Last Modified: 08 Dec 2018 13:36
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU