The Open UniversitySkip to content
 

Modeling the Martian dust cycle 1. Representations of dust transport processes

Newman, Claire E.; Lewis, Stephen R.; Read, Peter L. and Forget, François (2002). Modeling the Martian dust cycle 1. Representations of dust transport processes. Journal of Geophysical Research: Planets, 107(E12) p. 5123.

Full text available as:
[img]
Preview
PDF (Not Set) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1155Kb)
URL: http://www.agu.org/journals/je/je0212/2002JE001910...
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1029/2002JE001910
Google Scholar: Look up in Google Scholar

Abstract

A dust transport scheme has been developed for a general circulation model of the Martian atmosphere. This enables radiatively active dust transport, with the atmospheric state responding to changes in the dust distribution via atmospheric heating, as well as dust transport being determined by atmospheric conditions. The scheme includes dust lifting, advection by model winds, atmospheric mixing, and gravitational sedimentation. Parameterizations of lifting initiated by (1) near-surface wind stress and (2) convective vortices known as dust devils are considered. Two parameterizations are defined for each mechanism and are first investigated offline using data previously output from the non-dust-transporting model. The threshold-insensitive parameterizations predict some lifting over most regions, varying smoothly in space and time. The threshold-sensitive parameterizations predict lifting only during extreme atmospheric conditions (such as exceptionally strong winds), so lifting is rarer and more confined to specific regions and times. Wind stress lifting is predicted to peak during southern summer, largely between latitudes 15° and 35°S, with maxima also in regions of strong slope winds or thermal contrast flows. These areas are consistent with observed storm onset regions and dark streak surface features. Dust devil lifting is also predicted to peak during southern summer, with a moderate peak during northern summer. The greatest dust devil lifting occurs in early afternoon, particularly in the Noachis, Arcadia/Amazonis, Sirenum, and Thaumasia regions. Radiatively active dust transport experiments reveal strong positive feedbacks on lifting by near-surface wind stress and negative feedbacks on lifting by dust devils.

Item Type: Journal Article
ISSN: 1934-8843
Academic Unit/Department: Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 4504
Depositing User: Users 6827 not found.
Date Deposited: 07 Jul 2006
Last Modified: 09 Jan 2012 13:15
URI: http://oro.open.ac.uk/id/eprint/4504
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk