Petrology, bulk chemical and oxygen isotopic composition of a low-FeO ordinary chondrite, Yamato 982717

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© Unknown

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
PETROLOGY, BULK CHEMICAL AND OXYGEN ISOTOPIC COMPOSITION OF A LOW-FeO ORDINARY CHONDRITE, YAMATO 982717. A. Yamaguchi\(^1\), M. Kimura\(^1,2\), J.A. Barrat\(^3\), R.C. Greenwood\(^4\) and I.A. Franchi\(^5\). 1National Institute of Polar Research, Tokyo 173-8515, Japan (E-mail: yamaguch@nipr.ac.jp), 2Faculty of Science, Ibaraki University, Mito 310-8512, Japan, 3Université Européenne de Bretagne, U.B.O.-I.U.E.M., CNRS UMR 6538, Place Nicolas 20 Copernic, 29280 Plouzané Cedex, France, 4Planetary and Space Sciences, Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom.

Introduction: Ordinary chondrites (OC) are the largest meteorite clan, comprising approximately 80% of the global collection. OCs are generally classified into three chemical types, H, L, and LL groups. However, some OCs do not fit into these groups. Such OCs include “low-FeO OC” [1-3].

Yamato (Y) 982717 (original mass = 10.3 gram) has been classified as an anomalous H chondrite because of its very low Fa and Fs values [4]. Here we report the petrology, bulk chemical and oxygen isotopic composition of Y982717 and discuss its origin.

Methods: A polished thin section of Y982717 was examined optically, with a scanning electron microscope, electron microprobe analyzer (EPMA), and Raman spectrometer. Mapping of major elements (7.5 x 7.5 mm\(^2\)) using an EPMA was performed to check chemical homogeneity of mafic minerals and the distribution of minor minerals.

The bulk chemical composition of Y982717 was determined by ICP-MS [5]. Oxygen isotope analysis was performed by infrared laser-assisted fluorination. All analyses were obtained on ~2mg whole rock samples. In order to remove terrestrial weathering products one fraction of Y982717 was leached using a solution of ethanolamine thioglycollate (EATG) [6].

Results and discussion: A PTS of Y982717 shows a chondritic texture composed of chondrules and chondrule fragments set in a finer-grained (clastic?) matrix (Fig. 1). Several pyroxenes within chondrules and fragments display polysynthetic twinning. Mesostasis glass is devitrified. Feldspar is very fine-grained (<~5 µm). Texturally, Y982717 is identical to typical H4 ordinary chondrites.

Modes of kamacite, taenite, and troilite are ~8, ~0.5, ~5 wt%, respectively. The FeS/metal (wt%/wt%) value is ~0.3 and therefore similar to that of a typical H chondrite [7]. Olivine and pyroxene show minor mottled extinction indicating a shock stage of S2. Y982717 is slightly weathered, and contains ~1% of weathering products (weathering grade = A). Fe-hydroxide occurs pervasively along cracks and fractures in mafic minerals.

Silica minerals (tridymite and cristobalite?) (~0.2 vol%) occur interstitially between pyroxenes in both chondrules and lithic fragments. This textural association indicates that pyroxene is a primary phase in the meteorite and was not formed later by reduction during parent body metamorphism.

Figure 1. Photomicrograph of Y982717, showing a typical chondritic texture. Plane light. Width = 4.7 mm.

Figure 2. Chemical composition of olivine and pyroxene in Y982717. Data for Burnwell, LAP 04757, and H chondrites are from [2,3,8].
The composition of olivine (Fa10.6-13.3, average Fa11.2) and low-Ca pyroxene (Fs0.6-14.4Wo0.1-2.8, average Fs11.1Wo0.6) are significantly more magnesian than those of typical H chondrites, as well as other known low-FeO ordinary chondrites [1-3,8,41,12] (Fig. 2).

Ni (5.9-6.8 wt%) and Co (0.35-0.45 wt%) contents in Kamacite in Y982717 overlap with, but are slightly lower than, the range of H chondrites (Ni: 6.3-7.48 wt%, and Co: 0.44-0.51 wt%) [9]. Ni contents in taenite vary from 48.4-69.1 wt%.

Chromite compositions in Y982717 are Usp1.6-

3.0Sp11.7-16.2Chm82.0-85.9 and Mg# (molar Mg/(Mg+Fe)) x 100 = 12.0-16.5. Most feldspar grains are too small (<5 μm) to analyze by EPMA, but the few grains that could be measured were in the range Ab40-60. Some silica minerals contain minor elements (<0.07 wt% Al2O3, <0.4 wt% FeO). Phosphate minerals areapatite and whitlockite. Apatite contains CI (5.2-6.1 wt%) and a small amount of F (<0.3 wt%).

Refractory lithophile abundances in Y982717 are within or near the range of H chondrites. On a diagram of Zn/Mn vs. Al/Mn, Y982717 plots on the border of the OC range [10,11] (Fig. 3). The bulk chemical composition of Y982717 is similar to that of typical H chondrites.

Treated and untreated fractions of Y982717 are plotted in relation to the ordinary chondrite analyses of [11,14]. As shown, Y982717 plots outside the range of ordinary chondrites close to other low FeO ordinary chondrites [3].

Figure 4. Oxygen isotope composition of treated and untreated fractions of Y982717 plotted in relation to the ordinary chondrite analyses of [12].

Conclusions: Textural evidence and bulk chemical and oxygen isotope compositions are all consistent with an ordinary chondrite affinity for Y982717. However, in most cases Y982717 plots close to the border of known H chondrite ranges. Y982717 is petrologic type 4, however, Fs and Fa values are slightly outside the normal H chondrite range. There are two processes that could produce low-FeO ordinary chondrites, nebular or parent body [1]. In the latter setting some form of reduction during metamorphism would be involved [11]. However, there is no clear evidence that Y982717 experienced reduction during metamorphism (FeS/metal ratios, reduction textures). Consequently we conclude that Y982717 is the lowest-FeO H chondrite found to date and indicates that the H chondrites are more compositionally diverse than has been previously recognized.


als, Chap. 3. [9] Rubin A.E. (1990) GCA 54, 1217-