The Open UniversitySkip to content
 

Oxygen isotope and petrological study of silicate inclusions in IIE iron meteorites and their relationship with H chondrites

Mcdermott, Kathryn H.; Greenwood, Richard C.; Scott, Edward R. D.; Franchi, Ian A. and Anand, Mahesh (2016). Oxygen isotope and petrological study of silicate inclusions in IIE iron meteorites and their relationship with H chondrites. Geochimica et Cosmochimica Acta, 173 pp. 97–113.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.gca.2015.10.014
Google Scholar: Look up in Google Scholar

Abstract

The origin of silicate-bearing irons, especially those in groups IAB, IIICD, and IIE, is poorly understood as silicate should have separated rapidly from molten metal. Here we report the results of high precision oxygen isotope analysis of silicate inclusions in eleven group IIE meteorites and a petrological study of silicate inclusions in ten IIE irons including those in Garhi Yasin and Tarahumara, which have not been described in detail before. Oxygen isotopes have also been analysed in 20 H chondrites to investigate their possible relationship with the IIE irons.

Based on petrographic observations and mineral analysis, the silicate-bearing IIE meteorites have been divided into four types according to the nature of their silicate inclusions: 1) primitive chondritic, 2) evolved chondritic, 3) differentiated with >10 vol.% orthopyroxene, and 4) differentiated with <10 vol.% orthopyroxene. Each meteorite contains a single inclusion type. While inclusions in an individual IIE meteorite tend to show relatively limited Δ17O variation, a wide range of values is seen in the dataset as a whole. Group IIE irons with differentiated silicates, with the exception of Colomera, have a range of mean Δ17O values that is essentially identical to those of the H4-6 chondrites: 0.60-0.77‰ and 0.61-0.76‰, respectively. Colomera inclusions, which are differentiated with <10 vol.% orthopyroxene, have an anomalously high Δ17O value and plot ∼2σ away from the next nearest IIE iron. However, in view of the textural similarities to other IIE inclusions, a separate source for Colomera is deemed unlikely. Three IIE irons with primitive chondritic inclusions, Garhi Yasin, Netschaëvo, and Techado, have relatively low mean Δ17O values of 0.56-0.57‰ as well as relatively reduced silicates with Fa15-17 olivine, which have been called HH chondrites. Given the significant overlap in their oxygen isotope compositions, a genetic relationship between IIE irons and H chondrites is supported by our new data. However, derivation of both groups from one parent body seems unlikely. Instead, both groups probably sampled similar precursor materials and accreted at a similar nebular location.

Our data suggest that the IIE meteorites formed on an internally heated H/HH chondrite-like body that experienced the initial stages of differentiation in response to radiogenic heating. However, prior to full differentiation the IIE parent body experienced a major hit-and-run style collision that resulted in silicate-metal mixing. The initial stages of this event involved a phase of rapid cooling that prevented unmixing of metal and silicates. Reassembly of the IIE parent body produced a large regolith blanket that facilitated subsequent slow cooling. The IIE parent body has probably experienced numerous subsequent less catastrophic collisions. The development of alkali glass textures in some differentiated inclusions is probably the result of one of these later events.

Item Type: Journal Item
Copyright Holders: 2015 Published by Elsevier Ltd.
ISSN: 0016-7037
Project Funding Details:
Funded Project NameProject IDFunding Body
Astronomy and Planetary Sciences at the Open University (SP-12-089-MG)ST/L000776/1STFC (Science & Technology Facilities Council)
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Space
Item ID: 44786
Depositing User: Richard Greenwood
Date Deposited: 09 Nov 2015 10:57
Last Modified: 24 Jun 2019 18:40
URI: http://oro.open.ac.uk/id/eprint/44786
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU