Explosive volcanism in complex impact craters on Mercury and the Moon: influence of tectonic regime on depth of magmatic intrusion

Thomas, Rebecca J.; Rothery, David A.; Conway, Susan J. and Anand, Mahesh (2015). Explosive volcanism in complex impact craters on Mercury and the Moon: influence of tectonic regime on depth of magmatic intrusion. Earth and Planetary Science Letters, 431 pp. 164–172.

DOI: https://doi.org/10.1016/j.epsl.2015.09.029


Vents and deposits attributed to explosive volcanism occur within numerous impact craters on both the Moon and Mercury. Given the similarities between the two bodies it is probable that similar processes control this spatial association on both. However, the precise morphology and localization of the activity differs on the two bodies, indicating that the nature of structures beneath impact craters and/or volcanic activity may also be different. To explore this, we analyze sites of explosive volcanism within complex impact craters on the Moon and Mercury, comparing the scale and localization of volcanic activity and evidence for post-formation modification of the host crater. We show that the scale of vents and deposits is consistently greater on Mercury than on the Moon, indicating greater eruption energy, powered by a higher concentration of volatiles. Additionally, while the floors of lunar craters hosting explosive volcanism are commonly fractured, those on Mercury are not. The most probable explanation for these differences is that the state of regional compression acting on Mercury's crust through most of the planet's history results in deeper magma storage beneath craters on Mercury than on the Moon. The probable role of the regional stress regime in dictating the depth of intrusion on Mercury suggests that it may also play a role in the depth of sub-crater intrusion on the Moon and on other planetary bodies. Examples on the Moon (and also on Mars) commonly occur at locations where flexural extension may facilitate shallower intrusion than would be driven by the buoyancy of the magma alone.

Viewing alternatives

Download history


Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions



  • Item ORO ID
  • 44535
  • Item Type
  • Journal Item
  • Project Funding Details
  • Funded Project NameProject IDFunding Body
    The Geology of Mercury at High Spatial Resolution - PhD studentshipST/K502212/1STFC (Science & Technology Facilities Council)
    BepiColombo Mercury Imaging X-ray SpectometerPP/E002412/1UK Space Agency
    BepiColombo Mercury Imaging X-ray SpectometerST/M002101/1UK Space Agency
    Astronomy and Planetary Sciences at the Open University (SP-12-089-MG)ST/L000776/1STFC (Science & Technology Facilities Council)
  • Keywords
  • Moon; Mercury; explosive volcanism; impact crater; intrusion
  • Academic Unit or School
  • Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
    Faculty of Science, Technology, Engineering and Mathematics (STEM)
  • Research Group
  • Space
  • Copyright Holders
  • © 2015 Published by Elsevier B.V.
  • Depositing User
  • Rebecca Thomas