The Open UniversitySkip to content
 

Size Distribution of Air Bubbles Entering the Brain during Cardiac Surgery

Chung, Emma M. L.; Banahan, Caroline; Patel, Nikil; Janus, Justyna; Marshall, David; Horsfield, Mark A.; Rousseau, Clément; Keelan, Jonathan; Evans, David H. and Hague, James P. (2015). Size Distribution of Air Bubbles Entering the Brain during Cardiac Surgery. PLoS ONE, 10(4), article no. e0122166.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1371/journal.pone.0122166
Google Scholar: Look up in Google Scholar

Abstract

Background

Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.

Methods

Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.

Results

Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm). Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85%) were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.

Conclusions

Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

Item Type: Journal Item
Copyright Holders: 2015 Chung et al
ISSN: 1932-6203
Project Funding Details:
Funded Project NameProject IDFunding Body
Not SetFS/10/46/288350British Heart Foundation
Extra Information: 11 pp.
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Biomedical Research Network (BRN)
Item ID: 44408
Depositing User: James Hague
Date Deposited: 22 Sep 2015 08:38
Last Modified: 04 Oct 2016 15:25
URI: http://oro.open.ac.uk/id/eprint/44408
Share this page:

Altmetrics

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk