Nicotinic acid adenine dinucleotide phosphate (NAADP) and endolysosomal two-pore channels modulate membrane excitability and stimulus-secretion coupling in mouse pancreatic cells

How to cite:
Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John and Galione, Antony (2015). Nicotinic acid adenine dinucleotide phosphate (NAADP) and endolysosomal two-pore channels modulate membrane excitability and stimulus-secretion coupling in mouse pancreatic cells. Journal of Biological Chemistry, 290(35) pp. 21376–21392.

For guidance on citations see FAQs.

© 2015 The American Society for Biochemistry and Molecular Biology

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1074/jbc.M115.671248

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

Received for publication, June 11, 2015, and in revised form, July 3, 2015. Published, JBC Papers in Press, July 7, 2015, DOI 10.1074/jbc.M115.671248

Abdelilah Arredouani†1, Margarida Ruas1, Stephan C. Collins2, Raman Parkesh†3, Frederick Clough†4, Toby Pillinger†, George Coltart†, Katja Riedtorf†, Andrew Royle†, Paul Johnson†, Matthias Braun††, Quan Zhang†, William Sones†, Kenju Shimomura**, Anthony J. Morgan†, Alexander M. Lewis†, Kai-Ting Chuang†, Ruth Tunn†, Joaquin Gadea†, Lydia Teboul††, Paula M. Heister‡‡, Patricia W. Tynan‡, Elisa A. Bellomo‡, Guy A. Rutter‡4, Patrik Rorsman‡2, Grant C. Churchill‡, John Parrington‡3, and Antony Galione‡‡4

From the 1Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom, ‡The Mary Lyon Centre, Medical Research Council Harwell, Oxfordshire OX11 0RD, United Kingdom, the *Nuffield Department of Surgery, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, United Kingdom, the **Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom, the †Centre des Sciences du Gout et de l’Alimentation, Equipe 5, 9E Boulevard Jeanne d’Arc 21000 Dijon, France, the †§Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, United Kingdom, and the †The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom

*This work was supported by grants from The Wellcome Trust, the Medical Research Council, and The Royal Society. The authors declare that they have no conflicts of interest with the contents of this article.

† Author’s Choice—Final version free via Creative Commons CC-BY license. We dedicate this paper to the memory of Dr. Matthias Braun who died during the preparation of the manuscript.

‡ Deceased.

† Present address: Qatar Biomedical Research Institute, Qatar Foundation, P. O. Box 5825, Doha, Qatar, To whom correspondence may be addressed. E-mail: aarredouan@qf.org.qa.

‡ Present address: The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom. To whom correspondence may be addressed. E-mail: john.parrington@pharm.ox.ac.uk.

‡‡ Present address: The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom. To whom correspondence may be addressed. E-mail: antony.galione@pharm.ox.ac.uk.

Background: TPCs are regulated by NAADP and other factors.
Results: NAADP-induced Ca2+ release from acidic stores evokes depolarizing currents in pancreatic β cells. Inhibition of NAADP signaling or TPC knock out attenuates Ca2+ signaling and insulin secretion.
Conclusion: NAADP-evoked Ca2+ release enhances β cell excitability and insulin secretion in response to glucose or sulfonylureas.

Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells.

Pancreatic β cells are electrically excitable, and in response to elevated blood glucose concentrations, oscillatory bursts of Ca2+ action potentials mediated by VDCCs are elicited. These drive cytosolic Ca2+ ([Ca2+]i) oscillations that, in turn, induce pulsatile insulin release (1), and defects in their generation may be associated with the loss of glucose homeostasis in type-2 diabetes (2). Glucose-evoked membrane depolarization results from the closure of ATP-dependent potassium (KATP) channels, octameric complexes of sulfonylurea receptor 1 (SUR1)

5 The abbreviations used are: VDCC, voltage-dependent Ca2+ channel; cADPR, cyclic adenosine diphosphate ribose; ER, endoplasmic reticulum; GPN, glycyl-l-phenylalanine-β-naphthylamide; IP3, inositol 1,4,5-trisphosphate; NAADP-AM, nicotinic acid adenine dinucleotide phosphate acetoxymethyl ester; TPC, two-pore channel; SERCA, sarco/endoplasmic reticulum Ca2+ -ATPase; cytosolic Ca2+; NAADP, nicotinic acid adenine dinucleotide phosphate; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N”-tetraacetic acid.
and inwardly rectifying Kir6.2 potassium channel subunits (3), and inactivating or activating mutations in the K\textsubscript{ATP} channel (where the K\textsubscript{ATP} channel is the ATP-dependent potassium channel) subunits lead to congenital hyperinsulinemia (4) or neonatal diabetes (5), respectively. However, K\textsubscript{ATP} channel closure alone is not sufficient to depolarize the membrane to threshold, and activation of an additional depolarizing current has also been postulated (6, 7). The existence of an additional glucose-regulated membrane current in β cells is suggested by the finding that mice lacking functional K\textsubscript{ATP} channels (8), like Sur1 or Kir6.2 knock-out mice), are not hypoglycemic, and islets from adult knock-out mice are still capable of responding to glucose with electrical activity, [Ca2+]\textsubscript{i}, oscillations, and insulin secretion (9–11). The identity and regulation of this membrane conductance remain an enigma.

In contrast to the Ca2+ influx across the plasma membrane that plays a critical role in effecting insulin granule exocytosis, Ca2+ release from intracellular stores has been thought to play a modulatory rather than a triggering role in stimulus-secretion coupling in the pancreatic β cell. [Ca2+]\textsubscript{i}, oscillations in response to glucose are modulated by the uptake and release of Ca2+ from endoplasmic reticulum (ER) Ca2+ stores (12) and also from acidic Ca2+ storage organelles (13). In addition, several incretins, such as glucagon-like peptide 1 and acetylcholine, are thought to enhance insulin secretion by mechanisms that are, in part, dependent on Ca2+ release from intracellular stores via intracellular messengers such as cAMP and inositol trisphosphate (IP\textsubscript{3}) (14, 15). However, recent studies have suggested that the newly discovered Ca2+-mobilizing messenger NAADP might play an important role in β cell Ca2+ signaling (16–24).

NAADP, the most potent of the Ca2+-mobilizing messengers described, has been shown to mediate local Ca2+-signaling events by releasing Ca2+ from acidic, endolysosomal Ca2+ stores in several vertebrate and invertebrate cells (25–27), and appears to be a critical trigger for many Ca2+-signaling events (26–28). The most prominent target Ca2+ release channels for NAADP have recently been identified as the two members of the endolysosomal two-pore channel family, TPC1 and TPC2 (29–37). Some studies report a lack of NAADP sensitivity in isolated lysosomes (23, 38), which may reflect technical issues, but also may be due in part to loss of NAADP binding to an accessory protein (39–42) forming part of a multiprotein signaling complex in endolysosomal membranes (27, 43–45). NAADP-induced Ca2+ release in MIN6 cells can be disrupted by the lysosomotropic agent glyceryl-α-phosphorylalamine-β-naphthylamide (GPN) or bafilomycin, which disrupts acidic store Ca2+ storage implicating lysosomally related organelles as the principal target for NAADP in these cells (19, 20, 23). In the pancreatic β cell line MIN6, and primary mouse β cells, glucose increases NAADP synthesis and hence intracellular levels (18, 20, 22), consistent with its role as an intracellular messenger. NAADP introduced into mouse pancreatic β cells via a patch pipette was found to evoke a series of oscillatory plasma membrane currents, which were blocked by the NAADP antagonist Ned-19 (21) and were abolished in pancreatic β cells prepared from Tpcn2-/- mice (29). Furthermore, increasing concentrations of Ned-19 abolished glucose-evoked Ca2+ spiking in mouse pancreatic β cells, suggesting an important role for NAADP in stimulus-response coupling in these cells (21). This finding is consistent with our earlier study showing that prior desensitization of NAADP-sensitive Ca2+ release mechanisms block subsequent glucose-evoked Ca2+ signals in MIN6 cells (18).

Glucose (18) and glucagon-like peptide 1 (18, 20) have both been reported to increase β cell NAADP levels, effects that may be partially dependent on the ADP-ribosyl cyclase, CD38 (20, 22). At present, ADP-ribosyl cyclases, including CD38, are the only characterized enzymes that have been demonstrated to catalyze the synthesis of NAADP, using NAADP and nicotinic acid as substrates by a base-exchange mechanism (46, 47). It has been suggested that glucose stimulation increases the internalization of CD38 involving cytoskeletal changes (22) with NAADP synthetic sites associated with acidic organelles (20). Furthermore, glucose-evoked Ca2+ signals and insulin secretion are impaired in mouse CD38-/- pancreatic β cells, and Cd38-/- mice show glucose intolerance (48), and human CD38 autoantibodies and CD38 mutations have been shown to be associated with type-2 diabetes (49, 50). Recently, extracellular NAADP was found to be transported into mouse pancreatic β cells where it evoked Ca2+ release from acidic stores (24). Remarkably, intraperitoneal injections of NAADP were found to restore glucose-evoked insulin secretion in the db/db mouse model of type-2 diabetes and to ameliorate blood glucose regulation (24).

Here, we have used the cell-permeant analogue of NAADP, NAADP-AM (51), the selective cell-permeant NAADP antagonist Ned-19 (21), Tpcn1-/- and Tpcn2-/- mice (29), to explore a possible role for TPC-dependent NAADP-induced Ca2+ release from acidic stores in glucose-induced [Ca2+]\textsubscript{i}, increases and insulin secretion in primary mouse β cells.

Experimental Procedures

Preparation of Islets of Langerhans and Islet β Cell Clusters—Islets of Langerhans were aseptically isolated by collagenase digestion of the pancreases of 8–10-week-old male mice of the following strains: CD1, Tpcn2+/- and Tpcn2-/- (29), Tpcn1+/- and Tpcn1-/- (52), with Tpcn1 mice in a B6;129 background. All mice were killed by cervical dislocation and age- and sex-matched (and for the latter two, background strain-matched). Except for the hormone release measurements (for which intact islets were used), clusters of islet β cells and single β cells were prepared by dispersing islets in a Ca2+-free medium and cultured on circular coverslips for 1–4 days in RPMI 1640 culture medium (GIBCO, Paisley, UK) containing 10% heat-inactivated fetal calf serum, 100 IU/ml penicillin, 100 μg/ml streptomycin, and 10 mM glucose.

[Ca2+]\textsubscript{i}, Measurements—Cultured clusters of islet cells were loaded with 1 μM Fura PE3-AM or Fura 2-AM (Teflabs, Austin, TX) for 60 min at 37 °C in a bicarbonate-buffered solution containing 10 mM glucose. The coverslip was then used as the bottom of a temperature-controlled perfusion chamber (Bioscience Tools, San Diego) mounted on the stage of an inverted microscope. The flow rate was 1.5 ml/min, and the temperature within the chamber was 37 °C. [Ca2+]\textsubscript{i} was measured at dual-wavelength (340 and 380 nm) excitation spectrofluorimetry,
NAADP-mediated Ca\(^{2+}\) Release in Pancreatic \(\beta\) Cells

using a CCD camera (Photon Technologies International, Princeton, NJ) to capture the emitted fluorescence at 510 nm. When [Ca\(^{2+}\)] was simultaneously measured in a voltage-clamped single cell, the patch pipette contained 100 \(\mu\)M Fura 2 pentapotassium salt, and the emitted fluorescence was captured at 510 nm using a photomultiplier (Photon Technologies International, Princeton, NJ).

Measurement of Flavine Adenine Dinucleotide (FAD) Fluorescence—Cultured clusters of \(\beta\) cells were preincubated for 60 min at 37 °C in a control medium containing 3 mM glucose and then transferred to the stage of an LSM 510 confocal microscope. After a further 10 min of perfusion by 3 mM glucose, the recording was started. The oxidized form of the FAD was excited at 488 nm. Emitted fluorescence was collected with a 505-nm long-pass filter.

Electrophysiology—All patch clamp measurements were carried out using a multiclamp 700B patch clamp amplifier and the software pClamp 9 (Axon Instruments, Foster City, CA). When using the perforated whole-cell mode of the patch clamp technique, the electrical contact was established by adding the pore-forming antibiotic, amphotericin B, to the pipette solution. Amphotericin (stock solution of 60 mg/ml in DMSO) was used at a final concentration of 300 \(\mu\)g/ml. The tip of the pipette was filled with antibiotic-free solution, and the pipette was then back-filled with amphotericin-containing solution. The voltage clamp was considered satisfactory when the access resistance was <30 megohms and stable. In the standard whole-cell configuration, the access resistance was <15 megohms. Patch pipettes were pulled from borosilicate glass capillaries (World Precision Instruments, Hertfordshire, UK); they had resistances of 3–5 megohms when filled with intracellular solution.

All experiments were carried out on single \(\beta\) cells. Two criteria were used to identify \(\beta\) cells. The capacitance of mouse \(\alpha\), \(\delta\), and \(\beta\) cells has been reported to be 4.4, 5, and 7.4 picofarads, respectively. Therefore, only large cells with a capacitance of >5 picofarads were chosen for this study. The average capacitance was 7.6 ± 0.2 picofarads. After verification of the capacitance, a depolarizing protocol was applied to identify the properties of the voltage-dependent Na\(^{+}\) current, which is known to be largely inactivated at resting potential in \(\beta\) cells but not in \(\alpha\) and \(\delta\) cells. Thus, cells in which a large Na\(^{+}\) current could be activated by a small depolarizing pulse from a holding potential of −70 mV were discarded. By contrast, cells that displayed a Na\(^{+}\) current only after a hyperpolarizing pulse to −140 mV were considered to be \(\beta\) cells and were used for the experiments.

The whole-cell K\(_{\text{ATP}}\) channel current (\(I_{\text{K}_{\text{ATP}}}\)) was monitored by 100-ms duration pulses of ±20 mV from a holding potential of −70 mV. Whole-cell Ca\(^{2+}\) currents were recorded by depolarizing the plasma membrane with a 100-ms pulse from −80 to 10 mV.

Solutions—The medium used for the isolation of islets and for all experiments was a bicarbonate-buffered solution containing (in mM) the following: 120 NaCl, 4.8 KCl, 2.5 CaCl\(_2\), 1.2 MgCl\(_2\), and 24 NaHCO\(_3\). It was gassed with \(O_2/CO_2\) (94:6) to maintain pH 7.4 at 37 °C. Except for the electrophysiological experiments, it was supplemented with 1 mg/ml BSA (fraction V, Roche Applied Science, Mannheim, Germany). When the concentration of KCl was increased, the concentration of NaCl was correspondingly decreased to keep the osmolarity of the medium unchanged.

For electrophysiological measurements of \(I_{\text{K}_{\text{ATP}}}\), the standard extracellular solution contained (in mM) the following: 140 NaCl, 4.8 KCl, 2.5 CaCl\(_2\), 1.2 MgCl\(_2\), 5 HEPES (pH adjusted to 7.40 with NaOH), and 10 mM glucose. These solutions were gassed with \(O_2/CO_2\) (94:6%). For the perforated patch measurements of membrane currents and potential, the pipette solution contained (in mM) the following: 70 K\(_2\)SO\(_4\), 10 NaCl, 10 KCl, 3.7 MgCl\(_2\), and 5 HEPES (pH adjusted to 7.1 with KOH). For whole Ca\(^{2+}\) current, the pipette solution consisted of (in mM) the following: Cs\(_2\)SO\(_4\) substituted for K\(_2\)SO\(_4\). For NAADP infusion experiments, the pipette solution contained (in mM) the following: 125 K\(^+\) gluconate, 10 KCl, 10 NaCl, 10 KCl, 1 MgCl\(_2\), 3 Mg-ATP, 0.1 Na-GTP, and 5 HEPES (pH adjusted to 7.1 with KOH). In Fig. 3A, 100 \(\mu\)M Fura 2 pentapotassium was added.

Gene Expression Analysis—Total RNA was extracted from mice pancreas and liver following the RNeasy QiaRNA extraction procedure, including a DNase treatment (Qiagen). RT-PCR was performed in a reaction containing extracted RNA, the SuperScriptII One-Step RT-PCR system with Platinum Taq (Invitrogen), and the following gene-specific primers: Tpcn2 exons 4 – 8 amplicon (forward, 5’-gggccatctattttctgta-3’; reverse, 5’-tttgtaagtcgctagc-g-3’). The following parameters were used for RT: 50°C (30 min), 94°C (2 min); PCR, 30 cycles of 94°C (15 s), 57°C (30 s), and 68°C (1 min), followed by a final extension at 68°C (10 min). For gene expression analysis in \(\beta\) cells, cDNA was produced from total RNA using the High Capacity cDNA reverse transcription kit (Applied Biosystems), and PCR was performed with the following gene-specific primers for Tpcn2 exons 22 – 25 amplicon (forward, 5’-acactgattggtggtaaat-3’; reverse, 5’-gctgaaactcactaccctg-3’). The following parameters were used for PCR: 30 cycles of 95°C (30 s), 53°C (30 s), and 72°C (1 min), followed by a final extension at 72°C (10 min). Tpcn1 mRNA expression was analyzed as described previously (52).

Insulin Secretion—Islets were isolated from mice and cultured in RPMI 1640 medium overnight before insulin secretion was assessed. Insulin secretion was measured during 1-h static incubations in Krebs-Ringer Buffer (KRB) containing (in mM) the following: 18.5 NaCl, 2.54 CaCl\(_2\), 1.19 KH\(_2\)PO\(_4\), 4.74 KCl, 25 NaHCO\(_3\), 1.19 MgSO\(_4\), and 10 HEPES (pH 7.4). Samples of the supernatant were assayed for insulin using a mouse insulin ELISA kit (Mercodia, Sweden). Where Ned-19 was used, islets were preincubated for 5 min with the drug prior to the addition of secretagogues.

Glucose Tolerance Tests—Male Tpcn1\(^{-/-}\) (Tpcn1\(^{tm1Dgen}\)) (52) and Tpcn2\(^{-/-}\) (Tpcn2\(^{Gt(YTD437Rb)F8}\)) (29) mice and strain-matched wild types aged 66–76 days were fasted overnight and then given 2 g/kg intraperitoneal glucose (in the form of an autoclaved 20% glucose solution). Blood samples taken from the tail vein at 0, 15, 30, 60, and 120 min were analyzed with an Accu-Chek Compact Plus glucose monitor. Mean values for each time were compared using the Student’s t test, with \(p < 0.05\) taken as significant.

Insulin Secretion from Whole Pancreata—Pancreatic perfusions were performed within 15 min of cervical dislocation in...
80–100-day-old mice essentially as described elsewhere (53). At the end of the perfusion, the pancreas was dissected and transferred in acid/ethanol (ethanol/H₂O/HCl, 52:17:1). All samples were then stored at −20 °C. Only experiments with an output rate greater than 200 ml/min were assayed for insulin. The hormone assay was done using a commercially available RIA kit (Millipore, Watford, UK).

TPC2 Localization Studies—Human islets were prepared from beating heart donors with appropriate ethical permission and consents as described previously (54). Islets were dissociated into single cells and, after fixation in 4% (w/v) paraformaldehyde, were treated with antibodies as below (55). Rabbit anti-TPC2 antibody (1:150) was revealed with Alexa 568-conjugated secondary antibody (1:1500, Invitrogen, Paisley, UK). Guinea pig anti-insulin (1:300, DAKO, Ely, UK), goat anti-EEA1 (1:150, Santa Cruz Biotechnology, Santa Cruz, CA), and rat anti-LAMP-1 (1:150, Santa Cruz Biotechnology) were revealed with Alexa 488 secondary antibodies (1:1500, Invitrogen). Murine LAMP-1 (1:150, Santa Cruz Biotechnology) was revealed with Alexa 488 secondary antibodies (1:1500, Invitrogen, Paisley, UK). Guinea pig anti-insulin (1:300, DAKO, Ely, UK), goat anti-EEA1 (1:150, Santa Cruz Biotechnology, Santa Cruz, CA), and rat anti-LAMP-1 (1:150, Santa Cruz Biotechnology) were revealed with Alexa 488 secondary antibodies (1:1500, Invitrogen). Murine MIN6 clonal β cells (56) were transfected with plasmid encoding TPC2-mCherry using Lipofectamine 2000, and 48 h later were fixed, stained, and imaged as above. Images were captured using a Zeiss Axiosvert 200 M spinning disc confocal imaging system (×40 oil immersion objective corrected for chromatic aberration; Hamamatsu ImageEM 9100-13 back-illuminated EM-CCD camera) with illumination (491 and 568 nm) provided by solid state lasers (Crystal Laser, NV) using a laser merge module (Spectral Applied Physics, Ontario, Canada) (57).

Electron Microscopy—The islet preparations were fixed in 2% paraformaldehyde and 2% glutaraldehyde in cacodylate buffer in the presence of calcium chloride, washed, post-fixed in 1% osmium tetroxide, and contrast-enhanced by staining en bloc with uranyl acetate. Sections were further contrasted with Reynolds’s lead.

Chemicals—Ned-19, Ned-20 (21), and NAADP-AM (51) were synthesized in-house as described previously. Bafilomycin was from LC Laboratories, and other chemicals were from Sigma.

Results

Characterization of NAADP-AM-evoked Ca²⁺ Release—We first investigated the effects of NAADP on intracellular Ca²⁺ concentrations ([Ca²⁺]) in primary mouse pancreatic β cells using the membrane-permeant NAADP analogue NAADP-AM (51). Given that the concentration-response curve is bell-shaped in mammalian cells (58), different NAADP-AM concentrations were tested to optimize the response (Fig. 1A) (58). 10 nM NAADP-AM gave only a small response, whereas 10 μM NAADP-AM gave no response at all. An intermediate concentration of 60 nM was found to give the most consistent and largest Ca²⁺ response and was used for subsequent studies. In 8/10 clusters of β cells, extracellular application of NAADP-AM (60 nM), in the presence of low glucose (3 mM), evoked delayed [Ca²⁺], increases (Fig. 1A). The peak was reached >15 min after application of NAADP-AM (Fig. 1F). To assess the role of the ER in the action of NAADP-AM (59), we treated the cells with the SERCA pump inhibitor thapsigargin in the absence of extracellular Ca²⁺ to remove functional ER Ca²⁺ stores. In keeping with earlier observations (13), the NAADP-AM-evoked [Ca²⁺], transients were larger and occurred more rapidly after thapsigargin treatment (Fig. 1, B, E, and F) (13). Previous studies have implicated acidic Ca²⁺ stores as the principal target organelles for NAADP in pancreatic β cells and other cells (19, 60). Accordingly, bafilomycin (which inhibits Ca²⁺ uptake into acidic stores dependent on V-H⁺-ATPase activity) (60) blocked Ca²⁺ release in response to NAADP-AM treatment (Fig. 1, C and E). In addition, the membrane-permeant NAADP antagonist Ned-19 (100 μM) (Fig. 2F) (21) also completely abolished the Ca²⁺ transient evoked by NAADP-AM (Fig. 1, D and E). Collectively, these data suggest that NAADP targets acidic Ca²⁺ stores rather than the ER in mouse pancreatic β cells.

Modulation of Glucose-evoked Ca²⁺ Spiking by Ned-19 and Vacular Proton Pump Inhibitors—We next examined whether NAADP signaling plays a role in glucose-mediated responses in primary β cells as suggested previously in MIN6 cells (18). Stimulation of mouse pancreatic β cells by 10 mM glucose resulted in [Ca²⁺], oscillations that were superimposed upon a sustained plateau (Fig. 2A). Acute application of 60 nM NAADP-AM first enhanced Ca²⁺ spiking from 5.8 ± 0.7 to 11.6 ± 1.3 spikes/min (n = 5; p < 0.01) and then abolished glucose-evoked [Ca²⁺], oscillations after about 20–25 min (Fig.
NAADP-mediated Ca\(^{2+}\) Release in Pancreatic \(\beta\) Cells

FIGURE 2. Glucose-induced [Ca\(^{2+}\)]\(_i\) response in pancreatic \(\beta\) cells are dependent on NAADP-evoked Ca\(^{2+}\) release from acidic stores. A, typical [Ca\(^{2+}\)]\(_i\) oscillations induced by the stimulation of clusters of islet \(\beta\) cells by an increase of glucose from 3 to 10 mM as indicated. B, clusters of \(\beta\) cells were challenged with 10 mM glucose, and NAADP-AM (60 nM) was added acutely as indicated. C, clusters of islet \(\beta\) cells were challenged with 10 mM glucose, and Ned-19 was applied acutely as indicated. D, clusters of islet \(\beta\) cells were stimulated by an increase of glucose from 3 to 10 mM, and Ned-19 was applied acutely as indicated. E, clusters of islet \(\beta\) cells were stimulated by an increase of glucose from 3 to 10 mM, and Ned-20 was added as indicated. Representative traces were obtained in five separate clusters of islet \(\beta\) cells. F and G, structures of Ned-19 and Ned-20, a close structural analogue in which the fluorine atom is para on the benzene ring. H, clusters of islet \(\beta\) cells were pretreated with 3 mM bafilomycin and challenged with glucose or K\(^{+}\) (45 mM) as indicated by horizontal bars (by opening the K\(_{ATP}\) channels, diazoxide (Dz) (100 \(\mu\)M) prevents the direct effect of glucose on the membrane potential). I, glucose-induced [Ca\(^{2+}\)]\(_i\) oscillations are reversibly abolished by acute addition of 3 mM bafilomycin (Baf). J, quantification of the frequency of [Ca\(^{2+}\)]\(_i\) oscillations in I. K, clusters of pancreatic \(\beta\) cells were challenged with 10 mM glucose, and concanamycin (6 \(\mu\)M) was added acutely as indicated by the horizontal bar. The trace is representative of results obtained from eight clusters of islet \(\beta\) cells. Other traces are representative of results obtained in 11 (A), 5 (B), 8 (C), 9 (D), 8 (H), and 10 (I) clusters of islet \(\beta\) cells (*, \(p < 0.05\), Student’s t test).

This finding is consistent with the bell-shaped concentration-response curve to NAADP in mammalian cells (18, 51, 61); the initial stimulatory effect was mediated by low concentrations, and the subsequent inhibition reflected the build-up of higher self-desensitizing concentrations of NAADP (16, 18). The antagonist (18, 51, 61) Ned-19 was also found to inhibit the glucose-induced [Ca\(^{2+}\)]\(_i\) rise, and it abolished the Ca\(^{2+}\) oscillations, without affecting the initial [Ca\(^{2+}\)]\(_i\), decrease due to ATP-enhanced Ca\(^{2+}\) uptake by the ER (Fig. 2C) (62). When Ned-19 was applied after commencement of glucose-evoked Ca\(^{2+}\) responses, the glucose-induced [Ca\(^{2+}\)]\(_i\) plateau was abolished (Fig. 2D). The structurally related analogue Ned-20, which is not an NAADP antagonist (Fig. 2G) (21), was without effect (Fig. 2E).

Because NAADP mobilized Ca\(^{2+}\) from acidic organelles (Fig. 1C) (60), we examined whether selective pharmacological interference of Ca\(^{2+}\) storage by acidic organelles with agents that affect Ca\(^{2+}\) uptake into these stores (60) modulates glucose-evoked Ca\(^{2+}\) signaling. Preincubation of \(\beta\) cells with bafilomycin prevented the glucose-induced [Ca\(^{2+}\)]\(_i\), rise (Fig. 2H),

2B).
NAADP-mediated Ca2+ Release in Pancreatic β Cells

FIGURE 3. NAADP evokes Ca2+-dependent inward currents in pancreatic β cells. A, inward currents at −70 mV evoked by the infusion of 100 nM NAADP through a patch pipette in the standard whole-cell configuration. B–G, currents are absent under control conditions (i.e. in the absence of NAADP in the pipette solution (B); in the presence of 100 μM NAADP in the pipette solution (C); in the presence of 10 μM Ca2+ chelator BAPTA alongside 100 nM NAADP in the patch pipette (D); when the positive ions in the extracellular solution were replaced with N-methyl-d-glucamine (E); in the presence of extracellular Ned-19 (100 μM) (F); and the presence of the TRPM4 channel inhibitor 9-phenanthrol (10 μM) (G). The dotted lines represent the zero current level. H and I, glucose-induced inward currents in single cells clamped at −70 mV in the absence (H) or presence (I) of Ned-19 (100 μM). The dotted lines represent the zero current level. J and K, quantification of data from A to I and showing frequencies (J) and amplitudes (K) of currents. Traces/histograms are representative of or were obtained from 10 (A), 18 (B), 11 (C), 8 (D), 9 (E), 11 (F), 5 (G), 4 (H), 4 (I). *, p < 0.05.

as observed previously in the MIN6 β cell line (19). When bafilomycin was applied acutely, it reduced glucose-induced [Ca2+], oscillations (Fig. 2I). Similar results were obtained with concanamycin, another V-type-H+-ATPase blocker (Fig. 2K). The effect of bafilomycin on the frequency of glucose-evoked [Ca2+], transients is summarized in Fig. 2J. These observations are consistent with the hypothesis that NAADP-sensitive acidic Ca2+ stores play a key role in sustaining glucose-induced [Ca2+], oscillations in mouse pancreatic β cells (63).

NAADP Modulation of Plasma Membrane Currents and Membrane Potential—We have previously shown that intracellular application of NAADP in β cells evokes oscillatory currents (21, 29). To examine the impact of NAADP-evoked Ca2+ release on the excitability of pancreatic β cells in more detail, we infused NAADP (10–100 nM) through a patch pipette in the standard whole-cell configuration while simultaneously measuring the membrane currents. In β cells clamped at −70 mV, intracellular application of 100 nM NAADP evoked intermit- tent inward currents of varying amplitudes (Fig. 3A). These currents contrast with the periodic outward hyperpolarizing K+ currents evoked by IP\textsubscript{3}-evoked Ca2+ release in β cells (64), and they underscore the differential actions of these two Ca2+ -mobilizing messengers. The inward currents were absent in control cells where no NAADP was added to the intracellular solution (Fig. 3B), as well as when highly desensitizing concentrations (>1 μM) of NAADP were used (Fig. 3C), consistent with the bell-shaped concentration-response curve due to self-desensitization of the NAADP receptor (18, 61). Moreover, these currents were also prevented by addition of the Ca2+ chelator BAPTA to the pipette solution, demonstrating that they are likely dependent on Ca2+ release (Fig. 3D and see Fig. 7A). When N-methyl-d-glucamine replaced extracellular K+ and Na+, no inward currents could be seen in response to 100 nM NAADP (Fig. 3E). Taken together with the BAPTA studies, these data are consistent with the inward currents being due to opening of Ca2+-activated cation channels. The NAADP antagonist Ned-19 (100 μM) also abolished the NAADP-evoked currents, as shown previously (Fig. 3F) (21). NAADP-evoked Ca2+ release has recently been reported to activate TRPM4 channels in HeLa cells (65), and because this Ca2+-activated nonselective cation channel has been proposed to control insulin secretion (66) along with TRPM5 (67–69), we tested the effect of 9-phenanthrol, a TRPM4 blocker (70), on the NAADP-evoked currents in β cells. We found that the currents were inhibited by this drug (Fig. 3G), suggesting a possible involvement of TRPM4 channels.

Importantly, like NAADP, high glucose (15 mM) concentrations also evoked spontaneous inward currents in cells voltage-clamped at −70 mV (Fig. 3H). These glucose-induced inward currents were also blocked by Ned-19 (100 μM) (Fig. 3I). The frequencies and amplitudes of the above NAADP- and glucose-evoked currents from Fig. 3, A–I, are summarized in Fig. 3, J and K, respectively. Taken together, these data raise the exciting possibility that NAADP-mediated Ca2+ release from acidic stores may modulate the glucose-mediated membrane currents that in turn initiate β cell electrical activity and insulin secretion.

We next examined the effect of intracellular NAADP on the pancreatic β cell plasma membrane potential. A nonstimulatory level of glucose (3 mM) alone (Fig. 4A) had no effect on resting membrane potential (around −70 mV). In the presence of 3 mM glucose, NAADP-AM (60 nM) evoked low amplitude voltage oscillations that did reach the threshold for action potential firing (Fig. 4B). At 10 mM glucose, glucose-induced electrical activity consisting of 30–40-mV action potentials was observed. Under these conditions, the blockade of NAADP action with Ned-19 (100 μM) resulted in membrane hyperpolarization and suppression of electrical activity (Fig. 4C).
NAADP-mediated Ca\(^{2+}\) Release in Pancreatic β Cells

Ned-19 exerted no significant effects upon glucose metabolism, as indicated by the persistence of glucose-induced decrease in mitochondrial FAD fluorescence (Fig. 5A). The inhibitor was also without effect on K\(_{\text{ATP}}\) channel activity; in the presence of 10 mM glucose, the whole-cell conductance averaged 0.21 ± 0.04 and 0.20 ± 0.06 nanosiemens in the absence or presence of Ned-19 (Fig. 5B). By contrast, the combination of the K\(_{\text{ATP}}\) channel activator diazoxide and the mitochondrial inhibitor sodium azide (1 mM) resulted in a large increase in K\(_{\text{ATP}}\) channel activity. Similarly, there was no inhibitory effect of Ned-19 on the voltage-gated Ca\(^{2+}\) currents; the peak current during depolarization from −70 to 0 mV averaged 110 ± 1 pA (n = 10) and 114 ± 1 pA (n = 10) in the absence and presence of Ned-19, respectively (Fig. 5C). Thus, the suppression of electrical activity cannot simply be attributed to activation of K\(_{\text{ATP}}\) channels or inhibition of VDCCs. In addition, Ned-19 was without effect on Ca\(^{2+}\) release induced by the stimulation of muscarinic receptors with acetylcholine (100 μM) (Fig. 5D), which leads to the opening of IP\(_3\) receptors and discharge of ER stores (71). These data are therefore consistent with a high degree of selectivity of Ned-19 as an antagonist of NAADP and demonstrate that its effects are consistent with a major role for NAADP-induced Ca\(^{2+}\) release in glucose-induced Ca\(^{2+}\) signaling.

We next analyzed the effects of bafilomycin on the same functional parameters. The effects of the latter inhibitor were independent of alterations in glucose-evoked changes in mitochondrial membrane potential or cell metabolism (Fig. 5, E–G), VDCCs (Fig. 5H), or modulation of K\(_{\text{ATP}}\) channels (Fig. 5I). Moreover, in the absence of extracellular Ca\(^{2+}\), bafilomycin increased [Ca\(^{2+}\)]i after thapsigargin treatment (Fig. 5J), and vice versa (Fig. 5K), confirming that bafilomycin-sensitive Ca\(^{2+}\) stores are distinct from the ER. The application of the lysosomotropic agent GPN, a lysosomotropic agent that abrogates Ca\(^{2+}\) storage by lysosomes (19, 25), exerted effects that resembled those of bafilomycin (Fig. 5L), again indicating that a lysosome-related organelle is the likely source of Ca\(^{2+}\) release.

TPC2 Expression and Subcellular Localization in Endocrine Pancreas—Turning to the molecular targets for NAADP, we have recently identified TPC2, encoded by the Tpcn2 gene, as a critical mediator of the NAADP response (29), and we have shown that it is required to couple stimuli to Ca\(^{2+}\) release from acidic stores (72). This channel is localized on acidic stores, but not at the ER or plasma membrane, and in particular it colocalizes with organelles of the endolysosomal system, most prominently the lysosomes (29). RT-PCR analysis of mouse islets indicates that Tpcn2 is expressed in mouse islets (Fig. 6A). Affirming the localization of TPC2 to acidic stores in β cells, immunolocalization of the endogenous TPC2 in primary human β cells revealed substantial overlap with immunoreactivity of LAMP1, a major lysosomal marker (Fig. 6B). There was substantially less overlap with immunoreactivity for insulin or EEA1, used as markers for insulin granules (73) and endosomes (29), respectively. In a complementary approach, TPC2-mCherry was expressed in MIN6 cells (Fig. 6C). A similar lysosomal localization of TPC2-mCherry transfected into this murine β cell line was seen, but some co-localization with insulin granules could also be seen.

If NAADP-evoked Ca\(^{2+}\) release is involved in the regulation of the membrane potential by glucose, pharmacological manipulation of ion fluxes across the endomembranes involved would be predicted to impact on glucose-mediated changes in membrane excitability. It is therefore of interest that bafilomycin reversibly suppressed glucose-evoked action potentials (Fig. 4D).

Lack of Effects of Ned-19 and Vacular Proton Pump Inhibitors on Plasma Membrane Currents and Cell Metabolism and Validation of Compound Used—Although the profound effects of Ned-19 and bafilomycin on glucose-mediated Ca\(^{2+}\) signaling and electrical changes above were ascribed to antagonism of NAADP and abrogation of acidic organelle Ca\(^{2+}\) storage, it was important to rule out other targets that could potentially account for the effects of these two agents on glucose action.
NAADP-mediated Ca2+ Release in Pancreatic β Cells

FIGURE 5. Selectivity of pharmacological compounds employed. Ned-19 does not affect mitochondrial metabolism, plasma membrane currents, or IP\textsubscript{3}-induced Ca2+ release. A–C, changes in flavin adenine dinucleotide (FAD) fluorescence in response to glucose, which reflect glucose metabolism (A), the whole-cell K\textsubscript{ATP} current (B), and the whole-cell voltage-dependent Ca2+ current (C) produced by Ned-19 (100 µM). D, no effect of Ned-19 on [Ca2+], increases evoked by the muscarinic agonist acetylcholine (ACh). Traces are representative of results obtained in seven (B) and six (C) single β cells or six (A) and six (D) clusters of islet β cells. Bafilomycin (Baf) does not impair either glucose metabolism or whole-cell Ca2+ or K--ATP currents. E, top, clusters of islet β cells were loaded for 10 min with 10 nM of the potentially sensitive probe for measuring membrane potential changes in mitochondria, tetramethylrhodamine ethyl ester. An image was taken 5 min after washout of the dye. Middle, an image was taken after 15 min of incubation with 3 µM bafilomycin. Bottom, an image was taken after application of 2 µM of the protonophore, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), which depolarizes the mitochondrial membrane. Either pretreatment (F) or acute addition (G) of bafilomycin does not alter glucose metabolism reflected by changes in flavin adenine dinucleotide (FAD) fluorescence in response to glucose. Neither whole-cell Ca2+ current (H) nor whole-cell K--ATP current (I) was affected by bafilomycin (in H the Ca2+ current was recorded from the same cell before (black trace) and after bafilomycin application (red trace)). Images in E are representative of results obtained in six separate experiments. Traces are representative of results obtained in four (F and G) clusters of β cells and seven (H) and five (I) single β cells. Bafilomycin-sensitive Ca2+ stores are separate from the ER. J and K, clusters of islet β cells were transferred to a Ca2+-free solution before 1 µM thapsigargin (Tg), and 3 µM bafilomycin was added as indicated by horizontal bars. Representative traces of results obtained in seven (J) and six (K) clusters of islet β cells. L, lysosomes are essential for glucose-induced (Ca2+) oscillations. Clusters of islet β cells were stimulated by 10 mM glucose, and 50 µM glycyl-L-phenylalanine 2-naphthylamide (GPN) was applied as indicated. The GPN is a cathepsin C substrate, which permeabilizes the lysosomes by osmotic swelling. Trace is representative of results obtained in seven clusters of islet β cells. Dz, diazoxide; ACh, acetylcholine.
evoked Ca2+ transients and currents were absent in cells prepared from \textit{Tpcn2}−/− mice (Fig. 7B), mirroring the effect of Ned-19 on the wild-type cells (Fig. 3F). Detailed morphological comparison of \(\beta \) cells from \textit{Tpcn2}−/− and wild-type mice by electron microscopy indicated no substantial differences in morphology, organelle number, or distribution, including those of insulin granules (Fig. 7C), making it unlikely that changes in these parameters were the underlying cause for alterations in NAADP responses observed in \textit{Tpcn2}−/− null \(\beta \) cells.

Next, we examined the Ca2+ responses to glucose of \(\beta \) cells prepared from wild-type and \textit{Tpcn2}−/− mice (Fig. 8, A and B). In \textit{Tpcn2}−/− \(\beta \) cells, glucose-evoked Ca2+ transients were either abolished, reduced in amplitude, or delayed (Fig. 8, B and C) compared with the robust responses observed in wild-type cells (Fig. 8, A and C). The average [Ca2+], rises evoked by high glucose were substantially reduced (but \textit{not} abolished) in all \textit{Tpcn2}−/− \(\beta \) cells studied (Fig. 8C), although activation of VDCCs by membrane depolarization by K+ (45 mM) in the presence of the K\textsubscript{ATP} channel opener, diazoxide (100 \(\mu \)M), still evoked a large [Ca2+], response (Fig. 8B). Similar results were obtained from \textit{Tpcn1}−/− \(\beta \) cells (Fig. 8, D–F). These studies indicate that the lysosomal TPC2 and endosomal TPC1 channels play a significant role in the generation of glucose-induced Ca2+ signals in pancreatic \(\beta \) cells, likely through their modulation of \(\beta \) cell electrical activity.

It has been noted that a minimum concentration of glucose “fuel” is required for threshold concentrations of the oral hypoglycemic agent and K\textsubscript{ATP} inhibitor tolbutamide to mimic the electrical effects of raised glucose levels in mouse \(\beta \) cells (74). In agreement, we also found that in the absence of glucose (0 mM), tolbutamide (25 \(\mu \)M) treatment failed to increase [Ca2+], in contrast to the effect in the presence of 3 mM glucose. However, pretreatment with NAADP-AM (60 nm) partially reconstitutes the Ca2+ signal with tolbutamide in the absence of glucose (Fig. 8, G and H). Furthermore, we found that in wild-type mouse \(\beta \) cells exposed to 3 mM glucose, tolbutamide (25 \(\mu \)M) evoked a rise in [Ca2+], (Fig. 8I), whereas cells from \textit{Tpcn2}−/− mice failed to respond to tolbutamide.

Role of NAADP and TPC2 in Glucose-induced Insulin Secretion—Having implicated a key role for NAADP, TPC2, and lysosomal Ca2+ stores in Ca2+ signaling and electrical activity, we finally examined the effect of disrupting NAADP signaling upon insulin secretion itself. Insulin secretion was measured from isolated whole islets in response to glucose or 45 mM K+. Prior treatment of islets with Ned-19 (100 \(\mu \)M) for 5 min substantially inhibited insulin secretion induced by 15 mM glucose but not by 45 mM K+ (Fig. 9A). The absence of an effect of Ned-19 on insulin secretion induced by high K+ makes it unlikely that there is a relevant off-target effect of the inhibitor upon the exocytotic machinery.

We then studied insulin secretion evoked by 20 mM glucose using the perfused pancreas preparation in wild-type, \textit{Tpcn1}−/−, and \textit{Tpcn2}−/− mice. In the \textit{Tpcn1}−/− and \textit{Tpcn2}−/− pancreata, both the 1st (the response during the initial 7 min) and 2nd phase release (insulin secretion once the 1st phase release had ended) were reduced by \(\sim 50\% \) (Fig. 9, B–D).

Finally, we performed intraperitoneal blood glucose tests in fasted TPC knock-out mice in comparison with the corre-
sponding strain-matched wild-type animals to examine the effect of perturbing TPC expression upon glucose homeostasis in the whole animal. This revealed that in Tpcn1/H11002/H11002 mice (Fig. 9E) the blood glucose levels peaked at significantly higher levels than WT, and the time course revealed an impaired glucose tolerance capacity. In contrast, Tpcn2/H11002/H11002 mice (Fig. 9F) were less affected.

Discussion

This study highlights the importance of NAADP-sensitive acidic stores and the newly identified endolysosomal channels TPC1 and TPC2 in Ca\(^{2+}\) signaling during stimulus-secretion coupling in mouse pancreatic \(\beta\) cells. Since its discovery as a potent Ca\(^{2+}\)-mobilizing agent in sea urchin egg homogenates (75), NAADP has been widely demonstrated to evoke Ca\(^{2+}\) signals in an extensive range of mammalian cells, including those of both the endocrine and exocrine pancreas (76). NAADP is an alternative product of multifunctional ADP-ribosyl cyclase enzymes, which is also responsible for the synthesis of the ryanodine receptor-regulating messenger cADPR (46). Building on early studies suggesting that cADPR is an important regulator of Ca\(^{2+}\) signaling during secretion-coupling in pancreatic \(\beta\) cells (77), we now reported that NAADP also mobilizes Ca\(^{2+}\) in pancreatic \(\beta\) cells (16–18).

In contrast to the other two principal mobilizing messengers IP\(_3\) and cADPR, the major target organelles for NAADP in sea urchin eggs are acidic stores rather than the ER. Pharmacological approaches and cell fractionation studies revealed that NAADP releases Ca\(^{2+}\) from a separate organelle to the ER (78, 79), identified as acidic lysosomally related organelles (25). This principle was later extended to mammalian cells and NAADP release from acidic stores and has now been established in a large number cell types (60, 80). In many cells, signaling domains at lysosome-ER junctions have been observed (81). Thus, NAADP-evoked Ca\(^{2+}\) release from acidic stores may trigger further Ca\(^{2+}\) release from larger ER Ca\(^{2+}\) stores through the mediation of IP\(_3\) receptors and ryanodine receptors (59). Here, we have found that Ca\(^{2+}\) signals evoked by the mem-

FIGURE 7. NAADP evokes membrane currents and Ca\(^{2+}\) signals in pancreatic \(\beta\) cells from wild-type but not Tpc2\(^{-/-}\) mice. A and B, simultaneous [Ca\(^{2+}\)](black trace, upper) and whole-cell current recording (gray trace, lower) in response to the infusion of 100 nM NAADP through a patch pipette from a wild type (A) or Tpc2\(^{-/-}\) (B) single \(\beta\) cells voltage clamped at −70 mV. Traces are representative of results obtained from four (A) and four (B) single \(\beta\) cells. C, electron micrographs of mouse pancreatic \(\beta\) cells from wild-type and Tpcn2\(^{-/-}\) mice. EM sections are shown of \(\beta\) cells from pancreatic islet preparations from Tpcn2\(^{-/-}\) knock-out mice as indicated. Scale bar, 1 \(\mu\)m.
brane-permeant NAADP analogue NAADP-AM are from intracellular stores because they persist in the absence of extra-
cellular Ca\(^{2+}\) and that the NAADP antagonist Ned-19 blocks this effect (Fig. 1).

Comparison of the effects of drugs that effect Ca\(^{2+}\) uptake and storage in different organelles supports a role for acidic stores rather than the ER as the target of NAADP. Bafilomycin selectively inhibits vacuolar H\(^+\) pumps that acidify acidic stores, and it has been shown that Ca\(^{2+}\) uptake into acidic organelles is pH-dependent and probably mediated by Ca\(^{2+}/H^+\) exchange (60). Bafilomycin treatment was thus found to abolish NAADP-AM-evoked Ca\(^{2+}\) release (Fig. 1C). In con-
trast, thapsigargin (a SERCA pump inhibitor that blocks Ca\(^{2+}\) uptake into the ER) was found to enhance NAADP-AM-in-
duced Ca\(^{2+}\) release. This suggests that NAADP-evoked Ca\(^{2+}\) release in the β cells does not trigger further Ca\(^{2+}\) release through ER mechanisms. Rather the predominant role of the ER here is to act to buffer Ca\(^{2+}\) rather than as a source for release, and the functional removal of the ER decreases Ca\(^{2+}\) buffering, allowing Ca\(^{2+}\) release from acidic stores to increase further in the cytoplasm. The role of the ER to buffer Ca\(^{2+}\) during signaling has also been noted for glucose-evoked Ca\(^{2+}\) signals where glucose first decreases cytoplasmic Ca\(^{2+}\) due to increased ATP generation and stimulation of SERCA pumps (12, 82, 83). Previous studies also support acidic stores as targets for NAADP. Ca\(^{2+}\) indicators targeted to acidic granules or ER in MIN6 cells showed that NAADP releases Ca\(^{2+}\) from acidic organelles but not the ER (17). Bafilomycin and the lysosomotropic agent GPN abolishes Ca\(^{2+}\) release by photolysis of caged NAADP in MIN6 cells, but it does not affect IP\(_3\)-evoked Ca\(^{2+}\) release (19). In primary mouse β cells, NAADP-evoked Ca\(^{2+}\) release was inhibited by GPN, which was shown to lyse acidic stores selectively (13, 23). The delay in Ca\(^{2+}\) responses seen with NAADP-AM (Figs. 1 and 4) may also be determined partly by the time for hydrolysis of ester groups by intracellular endogenous esterases, which varies between cells (51), but the
delay is probably largely due to initial buffering of Ca$^{2+}$ by the ER because it was decreased by thapsigargin treatment. In addition, by analogy with the situation in the ER (83), uptake of Ca$^{2+}$ into acidic stores might be enhanced by glucose-stimulated ATP production, and because luminal Ca$^{2+}$ sensitizes TPCs to low NAADP concentrations, this could promote Ca$^{2+}$ release from these stores (84, 85), an effect that would be enhanced by removing competing ER stores.

Since the initial reports linking NAADP-evoked Ca$^{2+}$ release to two-pore channels (29–31), there have been numerous reports of TPCs playing an essential role in mediating NAADP-evoked Ca$^{2+}$ release from acidic stores (58, 86). However, recent evidence points to a separate NAADP-binding protein that interacts with TPCs to confer NAADP sensitivity (39). Indeed, the requirement of NAADP-binding proteins may suggest that under certain circumstances these proteins may interact with multiple channel types (87). This may explain a recent report of the loss of sensitivity of isolated lysosomes to NAADP (23, 38), and the finding that glucose may apparently still evoke Ca$^{2+}$ signals in β cells from Tpcn1$^{-/-}$/Tpcn2$^{-/-}$ mice (23), although it should be noted that the concentrations of NAADP-AM used in the report by Wang et al. (23) are more than 3 orders of magnitude greater than those found to be effective here. However, consistent with the data presented here, these authors (23) also reported that NAADP mobilizes Ca$^{2+}$ from acidic stores in the INS-1 β cell line, an effect blocked by Ned-19, and evoke membrane depolarization and spike generation in this cell line. We show here that NAADP-evoked Ca$^{2+}$ transients in β cells are abolished in cells prepared from Tpcn1$^{-/-}$ and Tpcn2$^{-/-}$ mice (Fig. 7, A and B). We found that endogenous TPC2 proteins in human β cells co-localized with lysosomal markers (Fig. 6B). Interestingly, TPC2 did not appear...
to colocalize with insulin granules, which have also been proposed to function as NAADP-sensitive Ca\(^{2+}\) stores in β cells (13, 17).

In addition to mobilizing Ca\(^{2+}\) from acidic stores, NAADP was also found here to evoke plasma membrane cation currents and to depolarize the plasma membrane. NAADP applied through the patch pipette at low concentrations evoked a series of inward current transients (Fig. 3, A–G). Application of higher NAADP (100 μM) gave no response, consistent with the bell-shaped concentration-response curve for NAADP in mammalian systems and paralleling the concentration dependence of NAADP for Ca\(^{2+}\) release in β cells (Fig. 1A) (16, 18, 20) and other mammalian cells (58). These currents were blocked by Ned-19 and by BAPTA, suggesting that they are Ca\(^{2+}\)-activated. Their abolition by replacing Na\(^+\) with N-methyl-D-glucamine suggests that the currents are cation currents largely carried by Na\(^+\) ions. Interestingly, a nonselective cation current has also been reported to be activated by GLP-1 (where GLP-1 is glucagon-like peptide 1), an agonist that has also been reported to elevate NAADP levels (20), in the HIT-T15 cell line (58).--

NAADP-induced Ca\(^{2+}\) release synergizes with the K\(_{\text{ATP}}\)-dependent pathway to depolarize the plasma membrane and activate VDCCs. The ATP-mediated closure of K\(_{\text{ATP}}\) channels increases membrane resistance, which together with Ca\(^{2+}\)-dependent depolarizing currents (possibly TRPM4/5 channels), activated by NAADP-induced Ca\(^{2+}\)-release via TPC2 expressed on acidic stores, may depolarize the plasma membrane to threshold for VDCC activation (AS, acidic stores; NSCC, nonselective cation channel; R\(_{\text{m}}\), membrane resistance; VDCC, voltage-dependent Ca\(^{2+}\) channels; Glc, glucose). In addition, NAADP-induced Ca\(^{2+}\)-release together with VDCC-mediated Ca\(^{2+}\) influx are both required for exocytosis of insulin granules.

To investigate the role of NAADP-mediated Ca\(^{2+}\) signaling in glucose-induced electrical activity and [Ca\(^{2+}\)]\(_{i}\), four different approaches were used to block NAADP signaling. These were as follows: (i) abrogation of Ca\(^{2+}\) storage by acidic stores with vacuolar proton pump inhibitors and GPN; (ii) inhibition of the NAADP receptor by Ned-19; (iii) self-desensitization of the NAADP receptor by NAADP; and (iv) knock-out of Tpcn2 and Tpcn1, genes encoding proposed NAADP target channels. Intriguingly, high glucose was also found to evoke small Ned-19-sensitive currents similar to those evoked by pipette application of NAADP (Fig. 3H). Thus, NAADP signaling may contribute, at least partly, to bringing the membrane potential from rest to the threshold for activation of VDCCs (Fig. 10). As has been recognized for a long time, closure of K\(_{\text{ATP}}\) channels is not sufficient to explain how glucose depolarizes the pancreatic β cell; a depolarizing membrane current is also required (7). We propose that NAADP/TPC1/2-dependent mobilization of Ca\(^{2+}\) from an acidic intracellular store results in activation of depolarizing cation-conducting plasmalemmal ion channels and that this brings the membrane potential to the threshold for action potential firing. This is consistent with our finding that in the absence of NAADP-evoked Ca\(^{2+}\) signals in cells from Tpcn2−/− mice, the K\(_{\text{ATP}}\) channel blocker, tolbutamide, at threshold concentrations fails to evoke Ca\(^{2+}\) signals as seen in wild-type cells (Fig. 8I). Indeed, it is remarkable that tolbutamide cannot by itself mimic glucose-induced Ca\(^{2+}\) signals but requires NAADP/TPCs. Indeed, tolbutamide will only evoke Ca\(^{2+}\) signals when the acidic vesicle pathway is co-stimulated either with subthreshold concentrations of NAADP/AM or with a permissive subthreshold glucose (3 mM) concentration (Fig. 8, G and H).

The final step in the stimulus-secretion coupling is the exocytosis of insulin-containing granules. In isolated islets, Ned-19 completely blocked glucose-evoked insulin secretion. Ned-19, however, had no effect on secretion evoked by depolarizing islet cells with high extracellular K\(^{+}\), which bypasses electrical activity and depolarizes the membrane potential to ~−10 mV and opens the VDCCs. This finding makes it possible to discard the explanation that Ned-19 inhibits insulin secretion by an off-
target effect on the exocytotic machinery. In a more in vivo setting, glucose-evoked insulin secretion from perfused whole pancrea from Tpcn2−/− and Tpcn1−/− mice was investigated. Insulin secretion stimulated by glucose (20 mM) was substantially reduced compared with that from wild-type animals (Fig. 9B). Thus, we provide evidence that NAADP signaling is an important regulator of stimulus-secretion coupling in pancreatic β cells (Fig. 10).

Surprisingly, Tpcn1−/− mice are only mildly diabetic as assessed by glucose tolerance tests (Fig. 9), with a significant impairment in Tpcn2−/− mice. However, a recent study has implicated TPC2 as a novel gene for diabetic traits in mice, rats, and humans (91), with a decrease in fasting glucose and insulin levels reported in Tpcn2−/− mice. The effects of knocking out Tpcn genes in mice may result in complex phenotypes, including compensatory mechanisms, with regard to blood glucose and insulin levels because NAADP-mediated Ca2+ release has been implicated in GLUT4 translocation in murine skeletal muscle (92). Furthermore, NAADP signaling has been implicated in the action of peroxisome proliferator-activated receptor γ agonists in their insulin-sensitizing actions to ameliorate insulin resistance (93). Future studies with tissue-specific inactivation of these genes will be required to address these questions.

Although NAADP levels in β cells have been reported to be increased in response to elevated glucose, and also in response to the incretin hormone GLP-1 (18, 20), the mechanisms are not well understood. However, ADP-ribosyl cyclases have been implicated in NAADP synthesis in β cells (20). Although CD38 is a membrane-bound ecto-enzyme, glucose treatment of β cells induces endocytosis of CD38 that requires cytoskeletal changes (22). Inhibition of CD38 internalization with jasplakinolide, which promotes actin polymerization, blocks glucose-stimulated NAADP levels and impairs glucose-evoked Ca2+ signaling (22). NAADP synthesis is found to be associated with lysosomal membrane fractions (20). We have previously argued that cADPR (and NAADP) synthesis may occur within the acidic organelles (94). The luminal acidic pH of acidic organelles would provide an optimal environment for NAADP synthesis by ADP-ribosyl cyclases (46). We showed that pyridine nucleotides are transported into organelles, and second messenger products are transported into the cytoplasm to their site of action (94).

Antibodies to CD38 (95) and a missense mutation in the CD38 gene (50) have been linked to type 2 diabetes, and this could potentially be accounted for by reduced NAADP synthesis. Remarkably, in a recent study, it was found that intraperitoneal injections of NAADP could restore defective insulin secretion and blood glucose regulation in db/db mice, an animal model of type 2 diabetes (24), presumably via the NAADP transport mechanisms described above.

Conclusions

We propose that NAADP-evoked Ca2+ release from acidic stores via TPC2 or TPC1 channels evokes a small local Ca2+ signal that activates Ca2+-dependent cation currents in the plasma membrane. The finding that the membrane currents evoked by intracellular Ca2+ mobilization are blocked by 9-phenanthrol implicates TRPM4 channels in this process. Additional direct effects of NAADP-evoked Ca2+ release on exocytosis itself cannot be excluded at this stage, with a possible contribution from exocytotic granules themselves (17, 96). The NAADP/TPC/acidic organelle pathway represents a new component of the glucose-evoked trigger to depolarize the plasma membrane upon KATP channel closure resulting in VDCC-mediated Ca2+ influx and insulin secretion (Fig. 10). This new pathway may offer new targets for novel diabetic therapies.

Acknowledgments—We gratefully acknowledge the help from the staff at the University of Oxford Biomedical Science Facility for their help in breeding and maintaining the Tpcn2−/− mice. We also thank Professor Frances Ashcroft for comments on the manuscript.

References

NAADP-mediated Ca\(^{2+}\) Release in Pancreatic \(\beta\) Cells

unmasks glucose-induced insulin secretion in mouse islets lacking ATP-sensitive K\(^+\) channels by improving the triggering Ca\(^{2+}\) signal. J. Biol. Chem. **282**, 14768–14776.

NAADP-mediated Ca\(^{2+}\) Release in Pancreatic \(\beta\) Cells

Cell Biology:
Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells

J. Biol. Chem. 2015, 290:21376-21392.
doi: 10.1074/jbc.M115.671248 originally published online July 7, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M115.671248

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 96 references, 48 of which can be accessed free at http://www.jbc.org/content/290/35/21376.full.html#ref-list-1