The Open UniversitySkip to content
 

Computation with Curved Shapes: Towards Freeform Shape Generation in Design

Jowers, Iestyn (2007). Computation with Curved Shapes: Towards Freeform Shape Generation in Design. PhD thesis The Open University.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview
Google Scholar: Look up in Google Scholar

Abstract

Shape computations are a formal representation that specify particular aspects of the design process with reference to form. They are defined according to shape grammars, where manipulations of pictorial representations of designs are formalised by shapes and rules applied to those shapes. They have frequently been applied in architecture in order to formalise the stylistic properties of a given corpus of designs, and also to generate new designs within those styles. However, applications in more general design fields have been limited. This is largely due to the initial definitions of the shape grammar formalism which are restricted to rectilinear shapes composed of lines, planes or solids. In architecture such shapes are common but in many design fields, for example industrial design, shapes of a more freeform nature are prevalent. Accordingly, the research described in this thesis is concerned with extending the applicability of the shape grammar formalism such that it enables computation with freeform shapes.

Shape computations utilise rules in order to manipulate subshapes of a design within formal algebras. These algebras are specified according to embedding properties and have previously been defined for rectilinear shapes. In this thesis the embedding properties of freeform shapes are explored and the algebras are extended in order to formalise computations with such shapes. Based on these algebras, shape operations are specified and algorithms are introduced that enable the application of rules to shapes composed of freeform B´ezier curves. Implementation of the algorithms enables the application of shape grammars to shapes of a more freeform nature than was previously possible. Within this thesis shape grammar implementations are introduced in order to explore both theoretical issues that arise when considering computation with freeform shapes and practical issues concerning the application of shape computation as a model for design and as a mode for generating freeform shapes.

Item Type: Thesis (PhD)
Copyright Holders: 2007 The Author
Keywords: design; curves; graphics; computer-aided design; CAD
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Design and Innovation
Item ID: 43671
Depositing User: Iestyn Jowers
Date Deposited: 07 Jul 2015 10:55
Last Modified: 09 Dec 2018 00:05
URI: http://oro.open.ac.uk/id/eprint/43671
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU