Microstructure and dielectric function modelling by spectroscopic ellipsometry and energy electron loss spectroscopy of In\textsubscript{2}O\textsubscript{3}:Sn thin films

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2010 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
https://www.academia.edu/9824013/Microstructure_and_dielectric_function_modelling_by_spectroscopic_ellipsometry_and_energy_electron_loss_spectroscopy_of_In2O3_Sn_thin_films

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Microstructure and dielectric function modelling by Spectroscopic Ellipsometry and Energy Electron Loss Spectroscopy of In$_2$O$_3$:Sn thin films

Gael Giusti, James Bowen, Stuart Abell and Ian Jones

Introduction

Indium tin oxide (ITO) is a semiconducting material combining high conductivity and high transparency in the visible range. It is the most widely used transparent conducting oxide in applications such as flat panel displays. In this work, ITO thin films were deposited by Pulsed Laser Deposition (PLD) onto transparent substrates (Corning 1737 glass). Deposition conditions (substrate temperature (T_s) and oxygen pressure ($P(O_2)$)) were changed to generate a variety of microstructures and electro-optical properties. Similar film thicknesses were used to avoid any change of carrier concentration (N). The dielectric function/complex refractive index were derived from spectroscopic ellipsometry using the Cauchy model in the 1.5-5.5 eV range and from Electron Energy Loss Spectroscopy for samples grown at RT, 200 and 400°C. Kramers-Kronig analysis of the single-scattering distribution (SSD) enabled the extraction of the real and imaginary parts of the dielectric function/complex refractive index.

Pulsed Laser Deposition (PLD)

Structural characterisation

Optical properties

Electrical properties

Ellipsometry: 1.5-5.5 eV range

Use of Cauchy model:

$$
\kappa(\lambda) = A + \frac{B}{\lambda^2} + 10 \frac{C}{\lambda^2} + \frac{E}{\lambda^2} + \frac{P}{\lambda^2}
$$

T_s varied

$P(O_2)$ varied

Comparison EELS/Ellipsometry in the 1.5-5.5 eV range

Corresponding BF micrographs:

Plasmon peak shift (0.97 eV) between RT and 400°C:

carrier concentration effect

EELS parameters spectra processing (EL/P 3.0 - Gatan):

1. Raw spectrum, FWHM=0.9-1.4 eV • t=0.4/0.6*MFp • β=5 mrad
 E_p=200 kV
2. Deconvolution with a hole spectrum
3. Removing of multiple scattering: Fourier-log deconvolution
4. Single scattering distribution (SSD) obtained
5. SSD fed into KRAKRO (fortran program – R.F. Egerton)
6. Normalisation via a known optical refractive index taken from ellipsometry results (800 nm)

Agreement between Hatt-effect, EELS measurements and optical data.

"(Kersting-Moss shift"=widenning of the band gap/blocking of the lowest states in the conduction band above the critical Mott density)"

Conclusion:

In the low energy range, the EELS results showed a reasonable agreement with the ellipsometry except at 200°C. This could be due the higher thicknesses of the specimen. Moreover, normalisation of the energy-loss function was accomplished using the refractive index. Normalisation will also have to be performed with an inelastic mean free path and the results compared with the present data. Increasing T_s and $P(O_2)$ resulted in more (222)-orientated structures, respectively lower/higher refractive indices (n) and lower extinction coefficients (k). Extinction coefficients were found to be very sensitive to the crystallinity and stoichiometry.