Participative Ecodesign: A New Paradigm for Professional Practice

How to cite:

© 1993 The Author
Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Our problems with Tb in possums make this an essential element. However, it will be sufficiently generalised to support other vector problems, such as the arboviruses. It will contain fields for vector density (including abundance) and disease status. Disease control managers will be able to record the dates and types of vector control operations. The results of operations will be assessed via linked surveillance module records.

Special Modules

It is recognised that there will be requirements outside the generic modules described above. For example, with tuberculosis, a module to record lesion sites, pathology and microbiology is planned. Other conditions may also require special modules to be "added on".

COMPUTER SYSTEMS

The MLD will operate on the MAF national network. This is a network of personal computers with supporting servers and other devices. The software system 'Oracle' will be used to develop the database, the so-called 'back-end'. The '4 GL Windows' product 'Power Builder' will be used to develop the input and output systems, the so-called 'front-end'. An additional analytical tool, for example 'SPSS', may also be necessary to provide for the requirements of regional and national disease control managers.

The configuration of databases, servers and work stations has yet to be defined. One certain challenge will be to achieve satisfactory speeds with such demanding software and systems in a network environment. However, there is no doubt that the efficiency and cost of computing systems will continue to improve dramatically, and we are therefore optimistic that any technology problems will be resolved.

CONCLUSIONS

The livestock industries require information for trade and for better management in a tough world market. The information technology challenge is to keep up with the ever changing information requirements, as producers face an array of opportunities and threats. Our aim with the MLD is to provide a sound basis to meet these needs in a timely and adequate manner.

REFERENCES

3. McKenzie J, Massey University, Palmerston North (pers. comm.)

PARTICIPATIVE ECODJSIGN: A NEW PARADIGM FOR PROFESSIONAL PRACTICE

"... every perception involves an aetiology and a prognosis" (Hanson 1969)

INTRODUCTION

In the preparation of this text, I am reminded of the words of my colleague David Russell (1986): "...my real work is different than your real work and this must always be so. The common ground which is the basis of our ability to communicate with one another comes through the common processes of perceiving and conceptualising. The processes may be the same but the end products are never the same. What we share is communication of the worlds we experience, we do not share a common experiential world." With these words in mind, I invite you to critically reflect on your own professional practice and to consider the key experiences which have shaped your "view of the world". I hope to share some experiences which have helped shape my view of the world, and which might assist in your own critical reflection. I do so because late twentieth century science and the professional practices which derive from it, are under challenge by new discourses such as "knowledge", "communication", "research", "development" and "learning". Because professional practice and the interpretation of individual experience is shaped by theories held "about the world", there is a need to consider these alternative discourses and the implications for future education and practice.

KEY EXPERIENCES

1. Based on the work of French philosopher/historian Michel Foucault, Weedon (1987) explains discourses as: "...ways of constituting knowledge, together with the social practices, forms of subjectivity and power relations which inhere in such knowledge and the relations between them. They constitute the body, unconscious mind and emotional life of the subjects which they seek to govern."
One of the ranch developments was on an area of predominantly Miombo woodland, the habitat of the tsetse fly. Traditional grazing involved herdsmen, day grazing and night containment in a boma; this was accompanied by regular dipping. Part of the ranch was bounded by a perennial river and this factor, combined with project objectives of increasing beef output, had lead to 150 ha of woodland adjacent to the river being cleared for the eventual sowing of irrigated, improved, tropical pasture.

When I visited the ranch, the timber had been cleared for about a year; considerable regrowth was already evident. The pasture had not been sown but the seed of legume and grass, imported from Australia, were in storage in a tin roofed shack on the ranch. It had been there for almost a year suggesting to me that the grass seed would no longer be viable. What I did find in place was a large self propelling irrigator, the pump, a New Holland hay baler and rake and a fertiliser spreader. The fertiliser spreader was for liquid manure - a type common in Europe or possibly on Australian dairy farms. All agreed it was unlikely to be of any use in the project. What had happened? All machinery procurement for FAO related projects was via headquarters in Rome. Need I say more? But the staff in FAO headquarters could not be held responsible for the decision by project staff that fodder conservation using this type of equipment was to be part of the "development strategy".

The machinery, lined up in the open - there was no machinery shed - was shown to me with pride and anticipation of what it might deliver. All this at a time when Tanzania had a chronic balance of payments problem such that petrol could only be purchased every other day, and the pilots of their international airline could only land at foreign airports if the landing fees had been prepaid. In other words there was no way beyond the life of the project that spare parts could be obtained for this sophisticated equipment.

Also, in my circles, the current wisdom was, and still is, that forage conservation in the tropics, particularly in the proposed form, was uneconomic.

On the return journey, we encountered elephant nearby. I inquired as to how they (the project team) proposed to keep these animals away from the new and conserved pasture. Fencing was proposed, but they were clearly concerned and still thinking about this issue.

I must confess to not being innocent in all this. As a visiting "pasture expert" from Australia, I was quickly consulted as to sowing strategy for the pasture in the shed. I had been in Tanzania all of 10 days. The short rains were about to start. Should they sow then or wait until the main rains? I was asked. Data available to me were limited, but average rainfall figures seemed to suggest it might be possible to sow in the short rains. But what was the quality of the seed and was there a high hard seed percentage to spread the risk of failure in the legume? These were unknowns. I suggested we needed these data to make a final decision. Understanding is that they proceeded to sow their precious seed in the short rains which were, I later learned, notoriously unreliable. To this day I do not know if a successful pasture was ever established, but I would wager money on it.

How do I now interpret the many dimensions of these very formative experiences, and why are they relevant to this paper? My own reaction to this role of being the visiting "expert" were I think telling. I felt enormous pressure to "deliver the goods" or to provide the "facts" which might "solve" their dilemma. I did not then, as I would now, think of this as a "process issue" within a "systems" problem. More of this later.

This experience, and my awareness that so much done in the name of "development" has failed, has lead me, over twelve years of professional practice as an educator and researcher, to be concerned with the process of problem formulation.

Let me attempt to explain what I mean by this in the context of the Tanzanian story. To do this I need to ask you to think of how the project I described came into existence. Who might have been involved in naming the problem as
One of the ranch developments was on an area of predominantly Miombo woodland, the habitat of the tsetse fly. Traditional grazing involved herdsmen, day grazing and night containment in a bomi; this was accompanied by regular dipping. Part of the ranch was bounded by a perennial river and this factor, combined with project objectives of increasing beef output, had lead to 150 ha of woodland adjacent to the river being cleared for the eventual sowing of irrigated, improved, tropical pasture.

When I visited the ranch, the timber had been cleared for about a year; considerable regrowth was already evident. The pasture had not been sown but the seed of legume and grass, imported from Australia, were in storage in a tin roofed shack on the ranch. It had been there for almost a year suggesting to me that the grass seed would no longer be viable. What I did find in place was a large self propelling irrigator, the pump, a New Holland hay baler and rake and a fertiliser spreader. The fertiliser spreader was for liquid manure - a type common in Europe or possibly on Australian dairy farms. All agreed it was unlikely to be of any use in the project. What had happened? All machinery procurement for FAO related projects was via headquarters in Rome. Need I say more? But the staff in FAO headquarters could not be held responsible for the decision by project that fodder conservation using this type of equipment was to be part of the "development strategy".

The machinery, lined up in the open - there was no machinery shed - was shown to me with pride and anticipation of what it might deliver. All this at a time when Tanzania had a chronic balance of payments problem such that petrol could only be purchased every other day, and the pilots of their international airline could only land at foreign airports if the landing fees had been prepaid. In other words there was no way beyond the life of the project that spare parts could be obtained for this sophisticated equipment.

Also, in my circles, the current wisdom was, and still is, that for moisture conservation in the tropics, particularly in the proposed form, was uneconomic.

On the return journey, we encountered elephant nearby. I inquired as to how they (the project team) proposed to keep these animals away from the sown and conserved pasture. Fencing was proposed, but they were clearly concerned and still thinking about this issue!

I must confess to not being innocent in all this. As a visiting "pasture expert" from Australia, I was quickly consulted as to sowing strategy for the seed in the shed. I had been in Tanzania all of 10 days. The short rains were about to start. Should they sow then or wait until the main rains. I was asked. Data available to me were limited, but average rainfall figures seemed to suggest it might be possible to sow in the short rains. But what was the quality of the seed and was there a high hard seed percentage to spread the risk of failure in the legume? These were unknowns. It was suggested we need these data to make a final decision. My understanding is that they proceeded to sow their precious seed in the short rains which were, I later learned, notoriously unreliable. To this day I do not know if a successful pasture was ever established, but I would not wager money on it.

How do I now interpret the many dimensions of these very formative experiences, and why are they relevant to this paper? My own reaction to this role of being the visiting "expert" were I think tiring. I felt enormous pressure to "deliver the goods" or to provide the "facts" which might "solve" their dilemma. I did not then, as I would now, think of this as a "process issue" within a "systems problem". More of this later.

This experience, and my awareness that so much done in the name of "development" has failed, has lead me, over twelve years of professional practice as an educator and researcher, to be concerned with the process of problem formulation.

Let me attempt to explain what I mean by this in the context of the Tanzanian story. To do this I need to ask you to think of how the project I described came into existence. Who might have been involved in naming the problem as
One of the ranch developments was on an area of predominantly Miombo woodland dominated by the teak-like flower, Tradictory goldenrod involved in herdsman, day grazing and night campfire hunting. I was accompanied by regular dipping. Part of the ranch was bounded on one side by a perennial river and this factor, combined with project objectives of intensive agricultural output, was one of many 150 ha of woodland adjacent to the river being cleared for the improvement of irrigated, improved, tropical pasture.

When I visited the ranch, the timber had been cleared for about a year and some of the growing season was already evident. The pasture had not been sown but the seed of legume and grass, imported from Australia, were in storage in a tin roofed shack on the ranch. It had been there for almost a year suggesting to me that the grass seed would no longer be viable. What I did find in place was a large self-propelling irrigator, the pump, a New Holland bale and rake and a fertiliser spreader. The fact that irrigation was a way for liquid manure - a type common in Europe and used in the Australian dairy farms. All agreed it was unlikely to be of any use in the project. What had happened? All machinery procurement for FAO related projects was via headquarters in Rome. Need I say more? But the staff in FAO headquarters could not be held responsible for the decision by project staff to use this equipment was to be part of the "development strategy".

The machinery, lined up in the open - there was no shelter - was shown to me with pride and anticipation of what would deliver. All this at a time when Tanzania had a chronic balance of payments deficit such that petrol could only be purchased every other day, and the pilots of our international airline could only land at foreign airports if the landing fees were paid in cash. In other words there was no way beyond the life of the project that spare parts could be obtained for this sophisticated equipment.

Also, in my circles, the current wisdom was, and still is, that foreign intervention in the tropics, particularly in the proposed form, was uneconomic.

On the return journey, we encountered elephant nearby. I inquired as to how they (the project team) proposed to keep those elephants off the game and conserved pasture. Fencing was proposed, but they were not clear as to how this would be done and I was still thinking about this issue!

I must confess to not being innocent in all this. While still "in the export" from Australia, I was quickly consulted as to avoiding strategy for the seeds or the equipment. I had been in Tanzania all of 10 days. The short rains were just starting. Should they sow them or wait until the main rains? I was available to me were limited, but average rainfall figures seemed to suggest it might be possible to sow in the short rains but what was the quality of the seeds and was there a high hard seed percentage to spread the risk of failure in the legume? These were unknown. I suggested we needed these data to make a final decision. Understandably, they proceeded to sow their precious seed in the short rains which we, as we know, have learned, notoriously unreliable. To this day I do not know if the supposedly successful pasture was ever established, but I would not wager money on it.

How do I now interpret the many dimensions of these very forlorn experiences, and why are they relevant to this paper? Reaction to this role of being the visiting "expert" were I think telling. There was enormous pressure to "deliver the goods" or to provide the "facts" which might "solve" the dilemma. I did not then, as I would now, think of this as a "process" name "systems problem." More of this later.

This experience, and my awareness that so much done in the name of "development" has failed, has lead me, over twelve years of professional practice, as an educator, administrator, to be concerned with the process of problem formulation.

Let me attempt to explain what I mean by this in the context of the Tanzanian story. To do this I need to ask you to think of how the project I described came into existence. Who might have been involved in naming the project as low or unreliable beef supply for par es Salaam? Who might have been persuaded to do so? How might it have been represented? Possibly a technical expert who saw the problem in a particular way may have proposed potential solutions based on his own experience. These questions, based on similar experiences to mine, were further determined by the nature of their interaction. It would seem the individual might pass through a range of emotional states which may or may not have been successfully interpreted from their body language and delivery of what they had to say. Slightly different interpretations of what a person said would be made by each member of the group.

We might also speak of each person bringing different "knowledge" to the group, knowledge from different cultural contexts. It might be said that same have local knowledge, practical knowledge and others practical knowledge.

What do we mean when we talk of "knowledge"? I believe we examine this question in the light of Banerjee's (1969) and Russell's (1986) words above. Does each person bring to the meeting knowledge of the nature of commodity or, as is commonly inferred in contemporary usage? Perhaps you might concur and say: "Yes! He has these texts, and she has this decision support system there on his computer." I would disagree. What each brings to the meeting is not only knowledge of language, in its broadest sense, in an attempt to share, through communication, a shared experience. It is in this process, in our interaction with the text of a book or a VDU, or in our own critical reflection, that we attempt to create meaning or knowledge. From this perspective, knowledge is not divorced from the process and context of its creation. Creating knowledge or meaning in this sense is a singularly human act.

To develop this idea further, I would like to return to human perception, cognition and the
biological basis of human communication.

When Hansen says "Perception has an aetiology and a prognosis", it is likely that you will grasp the metaphor more readily than me, as "aetiology and "prognosis" are usually outside my language domain (jargon?). Perception has a causal pathway and a forecasting element, or as I would prefer to put it, we see the world through perceptual filters which are our theories of the world. As Hansen states: "Both vision and knowledge are indispensable elements in seeing."

This has a biological basis (Maturana and Varela 1987). As organisms, our nervous system is structurally closed to the external environment; biologically, it is not possible to inform another organism, or for information or knowledge to be transferred from one organism to another. Knowledge is socially constructed by people, and bounded by the context of their worlds; in this sense knowledge is a relational phenomenon, rather than an object (Maturana 1988). This return to our biology in understanding how we "know", brings into question many of the metaphors which shape how we currently think about communication and teaching.

HUMAN COMMUNICATION

There has been widespread criticism of the linear transfer of technology (TOT) model of agricultural R&D in which scientists are seen to create knowledge which is then taken up by advisers or extensionists, and passed onto farmers (Russell et al 1989; Ison and Ampt 1992; Jiggins 1993).

With respect to the client-consultant relationship, Morris (1979, p656) observes: "...we have in the past rather neglected his (farmer's) views, or at least have planned a course of action and then tackled on an 'extension' effort to convince the livestock owner that we are working in his best interest."

A pivotal conceptual framework embodied in the TOT paradigm is the diffusion and adoption of innovations model of technology transfer. With its associated language (eg. barriers to adoption, early adopters, laggards - see Ison 1993), it shapes how extension and advisory work is thought and talked about, especially amongst administrators from a research background. For instance, Radostits and Blood (1985, p6) define what they considered a "willing farmer: a leader, successful, stable, knowledgeable, risk averse, who operates within the limits of resources (land, cash, etc)." This is almost equivalent to the "Innovator" in the diffusion of innovation model. It also reflects the tendency of professionals to orientate to clients who are most like them (Anderson 1984).

The diffusion model was developed in a particular context, and as so often seems to happen, educators, researchers and administrators have sought to employ it in contexts in which its assumptions no longer hold. This has been known for a long time (Crouch and Payne 1963; Latour 1987), yet still it shapes peoples' perceptions of extension. The TOT model has been shown to be based on a network of faulty assumptions, and powerful and embedded metaphors. They are linked to misconceptions about what actually occurs in the process of human communication (Russell 1992; Russell and Ison 1992; Ison 1993). The dominant metaphors are those of "information transfer", "information revolution", "channels of communication", and "teaching" (Ison 1990), most of which arise from seeing communication in the same way as two computers might transfer data. These pervasive metaphors based on the electronic model of communication of course ignore "meaning making" which is a singularly human ability with a biological basis.

As humans, we have no way of referring to ourselves, or to anything else, outside of language. Since language, or what we more commonly refer to as communication, creates what we call "reality", developing a shared meaning (a notion created by the observer) will involve participation in the task at hand of all those who will be affected by the outcome.

Based on his neurobiological research, Maturana (1988) has defined human social systems as systems of co-ordinations of actions in language, or networks of conversations. He thus argues that a change in a human social system can only take place in the network of conversations that its members
biological basis of human communication.

When Hakan says "Perception has an astrology and a prognosis", it is as if he were suggesting that the metaphor of astrology will guide people's understanding of the world, and that the metaphor of prognosis will predict events in the future. This metaphor is useful because it helps people to see patterns in the world and to make sense of what they experience. However, it is important to be aware that metaphors can be misleading and that they can limit our ability to understand the world accurately.

The diffusion model of innovation developed by Rogers (1983) describes how new ideas spread through a population. According to Rogers, innovation adoption is a process that occurs over time, and is influenced by factors such as the characteristics of the innovation, the characteristics of the potential adopters, and the social environment in which the adoption occurs. Rogers' model has been widely used to study the spread of new ideas in various fields, including technology, medicine, and social movements.

In recent research, diffusion of innovation has been studied in the context of the digital economy. For example, the adoption of social media platforms has been found to follow Rogers' diffusion model. However, the adoption of new technologies is not always smooth and easy. In some cases, new technologies may be resisted by certain groups of people, and this can hinder their diffusion.

HUMAN COMMUNICATION

A critical aspect of human communication is the ability to interpret and communicate with others effectively. This ability is essential for social cooperation and interaction. However, communication is not always effective, and misunderstandings can arise. Therefore, it is important to understand the factors that influence communication and to develop strategies to improve it.

A pivotal conceptual framework in the study of communication is the diffusion of innovation. Rogers (1983) developed a model to explain how new ideas spread through a population. This model has been widely used to study the diffusion of new technologies, including communication technologies.

Based on his research, Rogers has identified several factors that influence the diffusion of new ideas. These factors include the characteristics of the innovation, the characteristics of the potential adopters, and the social environment in which the adoption occurs. Understanding these factors can help us to design effective strategies for the diffusion of new ideas.

In conclusion, human communication is a complex and dynamic process that is influenced by a variety of factors. By understanding the factors that influence communication, we can improve our ability to communicate effectively with others.
traditionally been conceived as the function of agricultural and veterinary research and development. The consultant-client relationship relies on traditional discourses about what constitutes knowledge, and how it can be transferred to farmers. Thus, for many it is only a question of better packaging the facts or developing more effective "delivery" systems to get the "right" information to clients or students. These new discourses on knowledge necessitate a re-examination of what we commonly call or see as R&D, as well as teaching practice.

Research conducted in the NSW rangelands by the Community Approach to Rangelands Research (CARR) team exemplifies an attempt to respond to these new discourses (Russell and Ison 1992; Webber et al 1992ab). In our initial dialogue with pastoralists about developing new approaches to R&D, distinctions were made between:

- research on things, such as plants, soil etc;
- research on people and
- research with people.

Pastoralists found these distinctions meaningful. They were intrigued by our interest in researching with people, particularly as their previous experience of research and researchers was mainly one of researchers taking and seeming to give nothing back in return.

RELEVANCE TO VETERINARY PRACTICE

It is likely that the concepts I have explored above will resonate with members of the epidemiology chapter as you are concerned with "the ecology of diseases" or relationships between factors and diseases, rather than wanting to concentrate on symptoms of diseases.

My understanding is that veterinarians have traditionally been "clinical disease" orientated, but that there is increasing recognition that management and environment and other factors (sub-clinical and endemic diseases) can necessitate a broader or systems perspective. There is a broadening of the notion of disease in veterinary discourse to: "include not only clinical and sub-clinical disease but also management inefficiency, all three of which can result in sub-optimal performance." (Radostits and Blood 1985,p4). Shallow (1992) speaking of consulting argues that: "The aim is to change the perception of farmers in our district towards veterinarians, from providers of only an 'ambulance service' to that of whole-farm consultants." Some non-traditional approaches have gone further, to consider links between farmers personal characteristics in relation to, for example, farm performance and mastitis (Tarabla and Dodd 1990). Epidemiologists have long seen disease in terms of the ecosystem, and as an imbalance in the ecosystem. This perspective considers "disease" in its environmental context (I include, here social factors) and as increasingly being concerned with relational properties in the system.

In practice it would appear that veterinary knowledge is valued over local or farmer knowledge, although Kevin Bell (1988 p29), who has a vet-farm management consultancy in WA, seems to come close to appreciating local knowledge, when he observes: "Be humble enough to accept the fact that most good ideas come from farmers...", and, "Facilitate information transfer: farmers learn best from other farmers (even better than from you)." In the context of the TOT model outlined above, these are mixed messages when later, Bell (p31) states that the priority for consultants is to "transfer knowledge". Blood and Brightling (1988, p viii) also refer to "the knowledge explosion" which in my terms would be more accurately described as a data explosion, as only when meaning, by humans, is given to data is information produced. These conceptions are cause for concern given the increasing belief that decision support systems can "participate in decision making" (Ibid p92; see Ison 1993).

It could be argued that R&D, because of its reliance on "professional expertise" is a "values imposing system". Conventionally, despite all recent evidence to the contrary (see Latour. 1987; Appleyard 1992), scientific understanding is seen as objectively determined and value free. These understandings thus have the "power of truths" and accusations are then made against
traditional knowledge has been conceived as the function of agricultural and veterinary research and development. The consultant-client relationship relies on traditional knowledge, and discourses about what constitutes knowledge, learning, and development are developed more effectively. Different systems are used to get the 'right' information to clients or students. These new discourses on knowledge, and the process of developing more effective teaching-learning arrangements, are on our agenda. This examination of what we commonly call research or education, as well as teaching practice.

Research conducted in the NSW (New South Wales) rangelands by the Community Approach to Rangeland Research (CARR) team exemplifies an attempt to respond to these new discourses (Russell and Isson 1992; Weaber et al. 1992). In our initial dialogue with pastoralists about developing new approaches to R&D, distinctions were made between:

- research on things, such as plants, soil etc.;
- research on people and processes; and
- research on relationships between things and people.

Pastoralists found these distinctions meaningful. They were not as intrigued by our interest in research on things as we had hoped. More particularly as their previous experiences of research and researchers were mainly one of researchers taking and seeming to give nothing back in return.

RELEVANCE TO VETERINARY PRACTICE

It is likely that the concepts I have outlined will resonate with members of the epidemiology chapter as you are concerned with the health of people, in particular as a 'disease' is defined as a relationship between factors and diseases, rather than wanting to concentrate on symptoms of disease.

My understanding is that veterinarians have traditionally been 'clinically' oriented. This is not necessarily a negative orientation, but that there is an increasing realization that there are many people (fowl, environment and others), or factors (sub-clinical and endemic diseases) that can necessitate a greater understanding of a disease or disease process. There is a broadening of the notion of disease in veterinary medicine to 'include not only clinical and sub-clinical disease, but that the management of management inefficiency, all three of which can result in sub-optimal performance' (Radostits and Blood 1985, p.4). Shallcross (1992) speaking of consulting argues that: "The aim is to change the perception of farmers in our district towards veterinarians, from providers of only an 'assistance service' to those of 'whole-farm consultants.' Some non-traditional approaches have gone further, to the extent of linking farmers' personal characteristics with their interactions, e.g., "stability and odd behaviour" (Radostits 1990). Epidemiology and veterinary medicine are disease in terms of the ecosystem, and the interdependence of the ecosystem. This perspective considers disease in its environmental context (I include here social factors) and as increasingly being concerned with relational properties in the system.

In practice it would appear that veterinary knowledge is valued over local or farmer knowledge, although Kevin Bell (1988 p.29) has suggested that farm-management consultancy in WA, seems to come close.

"It is important to appreciate local knowledge, which is more than the obvious (the farmer)", and, "Educational transfer: farmers learn best from farmers (even better than from you). In the context of the CARR model outlined above, these are mixed messages which may conflict. Bell (p31) states that the priority for consultants is to "transfer knowledge" (Bell 1988, p.29). The emphasis may be on the narrow and in the local centre. Lately, however, it is suggested that the farmer is motivated by more effective strategies than "the clinician" (Vorster 1993).

It could be argued that R&D, because of its role in the human social system, is (what is referred to as) a 'values system'. Conventionally, despite all recent evidence, the "market" is the contrary (see Lawton 1987; Appleby 1992). Scientific understanding is seen as subjective, circular, and value free. These understandings underpin the "power of truths" and accusations are then made against those who are not prepared to "see" these truths and change their behaviours by adopting different practices (Radostits and Blood 1985, p56).

Drawing on this conceptual framework, our CARR group has been working over the last two years to assist a small group of pastoralists with careers and issues they have nominated as being of concern: marketing of middle micron wool. One of the outcomes of this research has been a set of workshops. I would like to suggest an alternative framework for some aspects of future professional practice.

PARTICIPATIVE RESEARCH

Despite the growing body of worldwide experience to the contrary, there persists the view that one person or nation can change or develop the other - to be responsible for them. It seems a little close to the old cliches which imply "we know what is right, you need to change your behaviours" and that we can effect this change by simply telling them what to do. These cliche and metaphors have been used by researchers, ourselves and suffering them ourselves, the experts and scientists, up to as if students or our clients were marionettes, controlling their movements. It is easy to think that there are short cuts and that local constraints and contexts can be bypassed, but this is not the case. We are questioning the utility and desirability of "expertise" but also the greater consideration of, and alternative contexts for, its practices. So how can we move away from action based on the cliches and embedded metaphors?

Naturana (1988) recognized two ways to trigger change in human social systems; both require experiences outside the network of communication. The first constitutes any particular human social system: through encountering others in a network of communication, that are not part of the system. The second is through moving beyond the normal range of a community interactions that trigger in us reflections upon our circumstances of existence, of being: common, in my experience, in relationships, in which 'love' is seen to be involved.

Some guiding design principles for participative research in the rangelands

- projects have the potential for more mutually satisfying outcomes when an invitation is extended to participate, and the research process is built on conversations which acknowledge each person's experience and context;
- it is important to understand that experience and knowledge is related to context, and that it is necessary to attempt to appreciate particular contexts;
- enthusiasm, which may be triggered, appears to be an emotional state predisposing individuals to action which is meaningful to that individual;
- matters individuals are keen to take action on the action are based on conversations which acknowledge each person's experience and context;
- pursuit of these matters in open, collaborative and critically informed ways can lead to locally meaningful and adaptive changes;
- knowledge is both individually and socially constructed and because of this, processes are necessary to create learning networks;
- pastoralists families and communities already do "research" and have the potential (share experience and knowledge) - but they place importance on
waiting to be asked);

* diversity of experience, knowledge, research and "extension" action is an asset of equal importance to the diversity of the biophysical environment.

These two last possibilities provide a framework for what I am calling ecodesign.

Design can be characterised as an involvement in a project that has many players and that translates human culture, technology and aspiration into form (Coyne and Snodgrass 1991). My focus on design is in response to Hooker's (1991) observation that: "The direct consequence of the profound changes in the character and role of organised knowledge is that the future must now be regarded as increasingly a human artefact - an art-in-fact. The future can no longer be regarded as a natural object, a fact already there or objectively determined by present trends. Rather it must be chosen.

Artefacts are the realisation of human value judgements in facts, in the concrete design of our world. Artefacts are experiments, experiments first with what is possible, and then what is preferable. They are designs, chosen from among possible designs, because of the values they realise in the designs." He proposes a process of futures design based on "backcasting" rather than extrapolation or projection from the present. (See Ison 1993).

Ecodesign is specifically concerned with bringing ecological principals and values (see Russell 1991; Walters and Holling 1990) to bear on the design process. Future professional roles are thus likely to involve responding to and extending invitations for problem or opportunity formulation as members of co-researching teams, joint identification and evaluation of alternatives, designing and facilitating group processes, and co-managing and evaluation of plans and programs.

Appropriate values for design must be articulated and developed. What are some of these possible values? I do not wish to be prescriptive, but I invite you to consider one perspective in the design of your future practice as veterinarians and educators.

John Heron (1989) developed a model which identified three levels of power to be consciously recognised in the process of project or learning activity (eg. curriculum) design: (i) Hierarchical, with "power over" leading to "deciding for"; (ii) Cooperative, or "power with", leading to "deciding with" and (iii) Autonomous, or "power to" leading to "delegating deciding to". Whilst not consciously using Heron's model, it nonetheless encompasses principles which have guided the design of our CARR project. I invite you to consider these in the design of curricula, and in the development of co-researching or co-learning networks with your clients. The distinction between authoritative and authoritarian is important here. An educator or professional may have more experience and theoretical development in some domains. This clearly provides authority just as the farmer is an authority on his/her own context. The invitation is to value each others authority and to resist transforming authority into authoritarianism (Frier and Shor 1987).

Participative ecodesign is proposed as a new paradigm which might shape future professional practice in ways that change the nature and quality of relationships between "experts", clients and technology.

ACKNOWLEDGMENTS

I would like to thank David Russell and Greg Curran for their past and continuing collaboration. Some of the understandings expressed in this paper have arisen through my involvement in the CARR (Community Approach to Rangelands Research) Project funded by the Wool Research and Development Corporation. I acknowledge my collaborators in this project, especially David McClintock and Lynn Webber.

REFERENCES

Appleyard, B. (1992) Understanding
waiting to be asked);

* diversity of experience, knowledge, research, and "experiment" action is an asset, of equal importance to the diversity of the physical environment.

These two last possibilities provide a framework for what I am calling ecosdesign.

Design can be characterised as an involvement in a project that has many players and that translates human culture, technology and settlement into form (Coyne and Snodgrass 1991). My focus on design is in response to Hooker's (1991) observation that: "The direct consequence of the profound changes in the character and role of organised knowledge is that the future must now be regarded as increasingly a human artefact - an art-in-fact. The future can no longer be regarded as a natural object, a fact already there or objectively determined by present trends. Rather it must itself be chosen. Artefacts are the realisation of human intentions in tact; in the concrete design of our world. Artefacts are experiments, experiences, first of what is possible, and then what is preferable. They are designs, chosen from among possible designs, because of the values they realise in the design process. He proposes a process of futures design based on backcasting rather than extrapolation or projection from the present. (See Ison 1993).

Ecosdesign is specifically concerned with bringing ecological principals and values into design processes (Russell 1991; Walters and Helling 1990) to bear on the design process. Future professional roles are thus likely to involve responding to and generating new problem or opportunity formulation as members of co-researching teams, joint identification and evaluation of alternatives, designing and facilitating the group processes, and co-managing and evaluation of plans and programs.

Appropriate values for design must be articulated and developed. What are the possible values? Do not wish to be prescriptive, but I invite you to consider one perspective in the design of your future practice as veterinarians and educators.

John Heron (1969) developed a model which identified three levels of power to be consciously recognised in the process of project or learning design (eg. curriculum design: (i) Hierarchical, with "power over" leading to "deciding for"; (ii) Autonomous, or "power with" leading to "deciding with" and (iii) Authoritative, or "power to" leading to "delegating deciding to". Whilst not consciously using Heron's model, it nonetheless encompasses principles which have guided the design of our CARR project. I invite you to consider these in the design of curricula, and the development of re-researching or co-learning networks with your clients. The distinction between authoritative and authoritarian is important here. An educator or professional may have more experience and theoretical development in some domains. This clearly provides authority just as the farmer is an authority on his/her own context. The invitation is to value each others authority and not resist transforming authority into authorisation (Friele and Shor 1987). Participative ecosdesign is proposed as a new paradigm which might shape future professional practice in ways that enhance the nature and quality of relationships between "experts", clients and technology.

ACKNOWLEDGMENTS

I would like to thank David Russell and Greg Curran for their past and continuing collaboration. To some of the understandings expressed in this paper have come through my involvement in the CARR (Community Approach to Rangelands Research) Project and in the Wool Research and Development Corporation, I acknowledge my collaborators in this project, especially David McClintock and Lynn Webber.

REFERENCES

Russell, D.B. (1986) How we see the world determines what we do in the world: preparing the ground for action research in the University of Western Sydney, Hawkesbury. 61p.

