The adhesive properties of pyridine-terminated self-assembled monolayers

How to cite:

For guidance on citations see FAQs.

© 2009 Elsevier B.V
Version: Accepted Manuscript
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.tsf.2009.01.093

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
The adhesive properties of pyridine-terminated self-assembled monolayers

James Bowen, Mayandithevar Manickam, Parvez Iqbal, Stephen D. Evans, Kevin Critchley, Jon A. Preece, Kevin Kendall

1. Introduction

Since it was invented by Binnig, Quate and Gerber [1] the atomic force microscopy (AFM) has been used to analyse the interactions which exist between surfaces of interest. The AFM has provided the modern researcher with the ability to perform repeated, accurate force measurements between a probe and a surface [2]. The data obtained has been useful in the research and development of biosensors [3], surfactants [4], and materials with enhanced properties [5] to name only a few examples. AFM can be employed in the analysis of forces such as adhesion [6,7] and friction [8,9] between surfaces of interest. The tips of AFM cantilevers can be modified through chemical functionalisation [10] or by the attachment of a colloidal particle such as silica [2,11,12].

The measurement of forces using AFM is a rapidly growing research area, and surface chemistry is often an important consideration during AFM adhesion force measurements [13] as the attractive or repulsive forces between two surfaces will be influenced by the chemistry of the surfaces. One particular area of interest is that of chemical force microscopy (CFM) measurements, where a surface and an AFM cantilever tip with well-defined surface chemistries are presented to each other, perhaps involving the modification of the AFM cantilever tip and the surface with self-assembled monolayers [10] CFM measurements are often made in aqueous environments [10] and typical variables are environmental ionic strength and pH, which can affect the adhesion between two surfaces by changing their ionisation state. Understanding the effect of surface chemistry on the interactions between surfaces in aqueous solution may impact upon research areas such as the development of microelectromechanical systems devices, biosensors, colloid science and drug development.

Upon their incorporation into the terminal moiety of a self-assembled monolayer (SAM), protonatable chemical species such as amines, carboxylic acids and phosphate groups have been shown to exhibit a shift in their pKa when present at a surface, relative to their pKa in free solution [14–16]. This shift in pKa has been attributed to the reduced availability and hindered orientation of the functional groups when present at the SAM surface. The use of contact angle measurements to estimate surface pKa has previously been reported by Creager and Clarke [17] for mixed SAMs incorporating carboxylic acid-terminated alkanethiols. This work reports the synthesis of four disulfide species and the characterisation of the SAMs they form on Au thin films. Each SAM presents a surface pyridine or substituted pyridine moiety with a different predicted pKa. The pKa of the pyridine moieties were altered through the incorporation of fluorne, chlorine and bromine substituents in the pyridyl ring. Contact angle titration and AFM adhesion force measurements were performed using aqueous phosphate buffered saline solutions over the pH range 3–9, and at concentrations of 150 mM and 0.1 mM. AFM adhesion force measurements were performed using a clean Si3N4 pyramidal-tipped AFM cantilever.
2. Experimental details

2.1. Chemical reagents

Four different dialkyl disulfides containing pyridine or substituted pyridine moieties were synthesised as described in Appendix A. The SAM structures, contact angle behaviour and the predicted pK_a values are listed in Table 1. Predictions were made using the Hammett and Taft equations for heteroaromatic acids and bases [18]. The organic solvents used for SAM formation were HPLC grade ethanol (EtOH, Fisher Scientific, UK) and analytical grade CHCl_3 (Fisher Scientific, UK). Piranha solution was used for glassware cleaning and for cleaning Au slides prior to SAM formation. Piranha solution was made as a 3:7 mixture of 30% laboratory reagent grade hydrogen peroxide (Fisher Scientific, UK) and analytical reagent grade concentrated sulfuric acid (Fisher Scientific, UK). Piranha solution is a very strong oxidising agent and has been known to detonate spontaneously upon contact with organic material. Therefore, eye protection (Fisher Scientific, UK) and nitrile gloves (Bodyguards, UK) were worn at all times, and as a precaution H_2O ice was used as a quenching agent.

When required for pH adjustments, NaOH solutions were made by dissolving NaOH pellets (Fisher Scientific, UK) in 18 M H_2O (Elga) at room temperature, followed by dilution as required. HCl solutions were made by diluting 11.65 M HCl solution (Fisher Scientific, UK) with 18 M H_2O at room temperature. All pH measurements were performed using an IQ150 pH meter (IQ Scientific Instruments) operating at room temperature. A 150 mM phosphate-buffered saline (PBS) solution (pH 7.4) was prepared by dissolving a PBS tablet (Sigma, UK) in 18 M H_2O at room temperature. The solution was adjusted to pH 3, 5, 7 and 9 through the addition of HCl solution or NaOH solution as necessary. A 0.1 mM PBS solution was prepared by dissolving 150 mM PBS solution with 18 M H_2O. The 0.1 mM PBS solution was adjusted to pH 3, 5, 7 and 9 through the addition of HCl solution or NaOH solution as necessary. The ionic strengths of the adjusted PBS solutions were all on the order of 200 mM, while the ionic strengths of the adjusted 0.1 mM PBS solutions were all on the order of 1-5 mM.

2.2. Deposition of Au thin films and formation of SAMs

Au was deposited onto clean glass microscope slides (BDH, UK) by thermal evaporation using an Auto 306 vacuum evaporation chamber (Edwards, UK), using Cr as an adhesion promoter. The chamber pressure was reduced to ~10^{-3} Pa using a two-stage pumping system. Cr pieces of 99.99% purity (Agar Scientific, UK) were heated by electrical resistance using a voltage of 30 V and a current of 3 A until ~5 nm of Cr had been deposited onto the glass surface. Au wire of 99.99% purity (Advent Research Materials, UK) of 0.5 mm diameter was placed into a Mo boat (Agar Scientific, UK) and was heated by electrical resistance using a voltage of 10 V and a current of 3 A until ~100 nm of Au had been deposited onto the desired surface. Deposition was monitored using a quartz crystal microbalance (QCM) thickness monitor. The deposition rate for both Cr and Au was in the range 0.05-0.10 nm s^{-1}. Nitrile gloves (Bodyguards, UK) were worn during all handling procedures and Dumostar tweezers (Agar Scientific, UK) were employed to minimise contact with the samples whenever it was practical to do so. Where Au substrates were required to be cut up into smaller pieces, a diamond-tipped scriber (Agar Scientific, UK) was used. Any dust produced was blown away with Ar gas.

All glassware used in SAM formation was cleaned prior to use by immersion in piranha solution at room temperature for ~1 h. Cleaning with piranha solution was followed by rinsing with copious amounts of 18 M H_2O (Elga) and drying in an oven at 140 °C. SAMs were prepared by immersing Cr-primed, Au-coated glass microscope slides in 1 mM solutions of the SAM compounds for 48 h, using either EtOH or CHCl_3 as a solvent. All Au substrates were cleaned prior to SAM formation by immersion in piranha solution at room temperature for 10 min. Cleaning with piranha solution was followed by rinsing with copious amounts of 18 M H_2O (Elga) and rinsing with copious amounts of EtOH or CHCl_3 as was appropriate to the SAM solution. Copious amounts of EtOH or CHCl_3 were blown away with Ar gas.

2.3. SAM characterisation and contact angle titration procedures

Characterisation of SAMs formed on Au substrates involved assessing their wetting behaviour, elemental composition and thickness, employing dynamic H_2O contact angle measurements, X-ray photoelectron spectroscopy and ellipsometry, respectively. Full descriptions of the SAM characterisation results can be found in the Appendix A. Dynamic H_2O contact angles were measured using a home-made stage apparatus, employing a Charge-Coupled Device (CCD) KP-M1E/K camera (Hitachi) and FTA Video Analysis software.

Table 1: Chemical structures of SAM compounds 1-4, their H_2O contact angle behaviour and predicted pK_a values in aqueous solution.

<table>
<thead>
<tr>
<th>SAM compound number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_6, H_2O (°)</td>
<td>88±2</td>
<td>92±1</td>
<td>91±1</td>
<td>54±2</td>
</tr>
<tr>
<td>θ_6, H_2O (°)</td>
<td>59±2</td>
<td>62±1</td>
<td>53±2</td>
<td>20±2</td>
</tr>
<tr>
<td>Predicted pK_a of pyridine moiety</td>
<td>-5.14</td>
<td>-6.14</td>
<td>0.88</td>
<td>5.60</td>
</tr>
</tbody>
</table>

Please cite this article as: J. Bowen, et al., Thin Solid Films (2009), doi:10.1016/j.tsf.2009.01.093
onto stainless steel sample holders, using both double-sided carbon with incident energy of 1486.68 eV. All measurements were made at Al K \textsuperscript{(Thermo VG Scientiﬁc XPS analysis of SAMs was performed using an Escalab 250 system procedure. The SAM was modelled using a Cauchy transparent layer, whose was 1.45 or 1.50, the outcome of the modelling process did not vary. whether the starting value for the iterative calculation process was rinsed thoroughly with 18 MΩ H\textsubscript{2}O after using aqueous buffer solutions the same procedures were followed. All equipment was rinsed thoroughly with 18 MΩ H\textsubscript{2}O using aqueous buffer solutions. Frames for the video analysis were captured at a rate of 0.12 Hz, usually yielding a minimum of ten frames for both the advancing contact angle and the receding contact angle. The calculated contact angles for each frame during the advancing or receding droplet movement were averaged to give mean values for both the advancing and receding contact angle behaviour of the surface. A minimum of 7 measurements were performed for each sample. Ellipsometry measurements were performed using a spectroscopic ellipsometer (Jobin-Yvon/Horiba, UK) operating with DeltaPsi2 v2.0.8 software. The angle of incidence was set to 70°. The wavelength range for the incident light was 280–800 nm. All measurements were made under conditions of ambient temperature, pressure and humidity. Mean film thicknesses were obtained from a minimum of six measurements at different locations on the substrate. Precautions were mad to avoid performing measurements on visibly defective locations on the sample. Calculation of the SAM thickness was performed using a three-phase ambient/SAM/Au model, in which the SAM was assumed to be isotropic and assigned an initial refractive index of 1.50 \textsuperscript{[19–21]. The refractive index of a SAM has also been reported as 1.45 \textsuperscript{[22,23]. However, it was found that whether the starting value for the iterative calculation process was 1.45 or 1.50, the outcome of the modelling process did not vary. The SAM was modelled using a Cauchy transparent layer, whose initial thickness was varied using a multi-guess iterative calculation procedure. XPS analysis of SAMs was performed using an Escalab 250 system (Thermo VG Scientiﬁc) operating with Avantage v1.85 software. An Al K\textsubscript{α} X-ray source was used, providing a monochromatic X-ray beam with incident energy of 1486.68 eV. All measurements were made at a pressure of \(\approx 5 \times 10^{-7} \) Pa. A circular spot size of \(\approx 0.2 \) mm2 was employed throughout all measurements. Samples were immobilised onto stainless steel sample holders, using both double-sided carbon sticky tape (Shintron tape, Shinto Paint Company) and stainless steel or copper sample clips (Thermo VG Scientiﬁc). The use of clips provided conductivity between the sample surface and the sample holder, because although the Au ﬁlm is conductive, the glass substrate is insulating. By providing a conductive link between the sample surface and the sample holder, surface charge retention during measurement was minimised. Low resolution survey spectra were obtained using a pass energy of 150 eV over a binding energy range of 0–10 eV to 1200 eV, obtained using 1 eV increments. Recorded low resolution spectra would typically be an average of 5 scans. All high resolution spectra were obtained using a pass energy of 20 eV over a binding energy range of 20–30 eV, centred around a chosen photoelectron binding energy, obtained using 0.1 eV increments. A dwell time of 20 ms was employed when collecting data from each binding energy increment for all measurements. Recorded high resolution spectra would typically be an average of at least 10 scans.

AFM adhesion force measurements were performed using a MultiMode AFM (Veeco, UK) operating in a liquid environment. The MultiMode AFM operated an E' scanner, with a maximum lateral range of 14 μm×14 μm and a maximum vertical range of 3.8 μm. The AFM was housed on a vibration isolation table to minimise the effect of ambient noise on measurement quality. Nanoscope v5.12 software (Veeco, UK) was used throughout for both real-time analysis and post-capture results processing. Samples were immobilised onto steel specimen disks (Agar Scientiﬁc, UK) using double-sided sticky tape (3 M, UK) prior to AFM analysis. All sample handling was carried out using Dumostar tweezers (Agar Scientiﬁc, UK) to minimise the risk of sample contamination. A glass ﬂuid cell (Veeco, UK) with a silicone O-ring (Veeco, UK) was employed for all force measurements. For each tip/sample/electrolyte combination, the electrolyte was housed in a 5 mL capacity Luer-Lok 24 plastic syringe (Fisher Scientiﬁc, UK) prior to introducing the liquid to the ﬂuid cell through clean silicone tubing (Veeco, UK). Prior to performing each measurement, the ﬂuid cell was rinsed thoroughly with 18 MΩ H\textsubscript{2}O and dried through absorption of H\textsubscript{2}O using a small 246 piece of paper towel (Kimberly Clark, UK). The ﬂuid cell was subsequently irradiated with long-wave UV light (366 nm) for 20 min using a UV lamp (BDH, UK) positioned approximately 5 mm above the ﬂuid cell. Upon being filled with electrolyte solution, the ﬂuid cell was sealed off using tubing clips and the system was allowed to thermally equilibrate. Equilibration was deemed to have occurred once the vertical and horizontal deﬂection of the cantilever had stopped ﬂuctuating.

Adhesion force measurements on SAMs were performed using triangular thick-legged Au-coated pyramidal-tipped Si\textsubscript{3} N\textsubscript{4} cantilevers.
Inspection of the results for SAM 4 reveals no consistent trend in moieties of SAMs amongst others. Therefore, a change in the protonation state, and hence the contact angle behaviour of the SAM, might be expected, were the moiety present in free solution. However, the moiety in the SAM formed from compound 4 between pH 5 and 7 aqueous solution of 5.60, a change in the protonation state of this moiety such that a change in the terminal pyridine moieties of SAMs 1–3, which all exhibited approximately similar jump-to-forces. Therefore, the jump-to force as measured by AFM for each of the four SAMs follows the same trend as the contact angle behaviour, in that the SAMs with higher H₂O contact angle behaviour, and therefore less surface energy, exhibit smaller jump-to-forces. It is interesting that the jump-to forces do not vary significantly with pH, which suggests that there is no electrostatic interaction occurring between SAM 4 and the AFM cantilever tip. Additionally, there is no significant change in the magnitude of the jump-to force between the two different electrolyte concentrations studied, which also suggests that the jump-to force is not electrostatic in nature. Upon the approach of the AFM cantilever tip to the SAMs in 0.1 mM PBS solution, a non-contact repulsive force was observed at pH 7 and pH 9 for all SAMs. The repulsive force, which did not vary significantly in magnitude between SAMs or with pH and electrolyte concentration, is attributed to the lower predicted pkₐ of the terminal pyridine moieties of SAMs 1–3, 8.14–6.14 and 0.88 respectively, as shown in Table 1, relative to that of SAM 1, which is 5.60, given the hydrophobic nature of the halogen substituents incorporated into their terminal moieties. As the pH range studied is lower than the predicted pkₐ of the terminal pyridine moieties of SAMs 1–3, a change in contact angle behaviour would not reasonably be expected with pH. In comparison, as the pyridine moiety of SAM compound 4 has a predicted pkₐ in aqueous solution of 5.60, a change in the protonation state of this moiety in the SAM formed from compound 4 between pH 5 and 7 might be expected, were the moiety present in free solution. However, the effect of surface confinement on the pkₐ of the pyridine moieties appears to have altered the pkₐ of these moieties such that a change in protonation state, and hence the contact angle behaviour of the SAM, does not occur between pH 5–7. The change in pkₐ of moieties when present as the terminal moiety in SAMs has previously been reported for amino [14,15], carboxylic acid [16] and sulfonic acid [14] moieties, amongst others. Therefore, a change in the pkₐ of the pyridine moieties of SAMs 1–4 could reasonably be expected here also. Inspection of the results for SAM 4 reveals no consistent trend in contact angle behaviour with pH for the two electrolyte concentrations studied. There is a slight decrease in contact angle behaviour for those measurements performed using 150 mM PBS solution between pH 3 and pH 5, but contact angle measurement is a relatively coarse method for examining subtle changes in surface character. Therefore, it is expected that the AFM force measurements will prove more sensitive to any change in the protonation state of the SAM terminal moieties. Interestingly, it has recently been reported that smoother Au surfaces produce greater shifts in the apparent surface pkₐ of mercaptocarboxylic acid SAMs [24] and it may be that the roughness of the Au thin films employed here, which were found to have an Rₐ of 1 nm when imaged by AFM, has influenced the behaviour of these SAMs.

3. Results and discussion

3.1. Contact angle titration behaviour of SAMs

Contact angle titration involves measuring the contact angle behaviour of a solid surface over a range of pH, generally performed using droplets of aqueous electrolyte adjusted to the desired pH. In this case, the contact angle behaviour of SAMs 1–4 was assessed using 150 mM and 0.1 mM PBS solutions adjusted to pH 3, 5, 7 and 9, affording analysis of the effect of pH and electrolyte concentration. The measured contact angle titration behaviour of SAMs 1–4 using 150 mM and 0.1 mM PBS solutions, shown in Figs. 1 and 2 respectively, reveal that the contact angle behaviour of SAMs 1–3 is similar to their contact angle behaviour measured using 18 MΩ H₂O. Furthermore, there is little variation in the contact angle behaviour of each SAM with either pH or electrolyte concentration. Interestingly, however, the contact angle behaviour of SAM 4 is 25–30° lower than the contact angle behaviour of SAMs 1–3. Such an effect could be attributable to the lower predicted pkₐ of the terminal pyridine moieties of SAMs 1–3, 8.14–6.14 and 0.88 respectively, as shown in Table 1, relative to that of SAM 1, which is 5.60, given the hydrophobic nature of the halogen substituents incorporated into their terminal moieties. As the pH range studied is lower than the predicted pkₐ of the terminal pyridine moieties of SAMs 1–3, a change in contact angle behaviour would not reasonably be expected with pH. In comparison, as the pyridine moiety of SAM compound 4 has a predicted pkₐ in aqueous solution of 5.60, a change in the protonation state of this moiety in the SAM formed from compound 4 between pH 5 and 7 might be expected, were the moiety present in free solution. However, the effect of surface confinement on the pkₐ of the pyridine moieties appears to have altered the pkₐ of these moieties such that a change in protonation state, and hence the contact angle behaviour of the SAM, does not occur between pH 5–7. The change in pkₐ of moieties when present as the terminal moiety in SAMs has previously been reported for amino [14,15], carboxylic acid [16] and sulfonic acid [14] moieties, amongst others. Therefore, a change in the pkₐ of the pyridine moieties of SAMs 1–4 could reasonably be expected here also. Inspection of the results for SAM 4 reveals no consistent trend in contact angle behaviour with pH for the two electrolyte concentrations studied. There is a slight decrease in contact angle behaviour for those measurements performed using 150 mM PBS solution between pH 3 and pH 5, but contact angle measurement is a relatively coarse method for examining subtle changes in surface character. Therefore, it is expected that the AFM force measurements will prove more sensitive to any change in the protonation state of the SAM terminal moieties. Interestingly, it has recently been reported that smoother Au surfaces produce greater shifts in the apparent surface pkₐ of mercaptocarboxylic acid SAMs [24] and it may be that the roughness of the Au thin films employed here, which were found to have an Rₐ of 1 nm when imaged by AFM, has influenced the behaviour of these SAMs.

3.2. Adhesive properties of SAMs

AFM adhesion measurements were performed on SAMs 1–4 using a pyramidal-tipped Si₃N₄ AFM cantilever. Measurements were performed in 150 mM and 0.1 mM PBS solutions adjusted to pH 3, 5, 7 and 9. The jump-to forces exhibited by SAMs 1–4 measured in 150 mM and 0.1 mM PBS solutions are shown in Figs. 3 and 4 respectively. These results show that SAM 4 exhibited a greater jump-to-force than SAMs 1–3, which all exhibited approximately similar jump-to-forces. Therefore, the jump-to force as measured by AFM for each of the four SAMs follows the same trend as the contact angle behaviour, in that the SAMs with higher H₂O contact angle behaviour, and therefore less surface energy, exhibit smaller jump-to-forces. It is interesting that the jump-to forces do not vary significantly with pH, which suggests that there is no electrostatic interaction occurring between SAM 4 and the AFM cantilever tip. Additionally, there is no significant change in the magnitude of the jump-to force between the two different electrolyte concentrations studied, which also suggests that the jump-to force is not electrostatic in nature. Upon the approach of the AFM cantilever tip to the SAMs in 0.1 mM PBS solution, a non-contact repulsive force was observed at pH 7 and pH 9 for all SAMs. The repulsive force, which did not vary significantly in magnitude between SAMs or with pH, probably occurred due to the increasing deprotonation of the SiO₂ surface of the AFM cantilever tip with increasing pH. It should be noted that the pull-off forces measured during the AFM measurements were approximately one order of magnitude greater than the measured jump-to-forces, and displayed no apparent trend between SAMs or with pH and electrolyte concentration. The pull-off force is a measure of the maximum force experienced by the cantilever tip upon its approach towards the SAM surface, for all tip/sample/electrolyte combinations.

Fig. 3. Adhesion (jump-to) forces measured between the cantilever tip and SAMs 1–4 in 150 mM PBS at pH 3–9.

Please cite this article as: J. Bowen, et al., Thin Solid Films (2009), doi:10.1016/j.tsf.2009.01.093
greater penetration of the AFM cantilever tip into the SAM, therefore increasing the contact area. Additionally, the roughness of the Au surface and the exact point of contact between the AFM cantilever tip and the SAM will also affect the results, as there will not be an idealised sphere-on-flat contact geometry at all locations. Fears et al. [25] recently described the analysis of the surface pK_a of COOH- and NH$_2$-terminated alkanethiols on Au surfaces using surface plasmon resonance (SPR), and this would seem to be a suitably sensitive technique with which to analyse the SAMs investigated here. SPR allows the solution pH local to the SAM surface to be analysed, at sub-nanometre resolution, and therefore the type and concentration of ion present adjacent to the SAM surface can be assessed, which would afford further insight into the protonation state of these pyridine-terminated SAMs.

4. Conclusions

The effect of electrolyte pH and electrolyte concentration on four pyridine-terminated SAMs has been investigated using contact angle titration and AFM adhesion measurements. Measurements performed either using or while immersed in 150 mM and 0.1 mM PBS solutions studied the adhesion behaviour of the SAMs. It was found that both the pH and concentration of the aqueous electrolyte have little effect on the contact angle titration behaviour and the adhesion force behaviour of the SAMs, with the exhibited forces being due to van der Waals forces, rather than electrostatic interactions between the tip and the SAM. Such behaviour suggests that the protonation state of the terminal pyridine moieties of the SAMs does not change over the pH range studied here, due to a shift in the pK_a of the pyridine moiety when present as the terminal group in a SAM. Similarly, the change in pK_a of amino [14,15], carboxylic acid [16] and sulfonic acid [14] moieties when present as the terminal moieties in SAMs has previously been reported. For the systems studied here, it does not appear that pK_a alone is a sufficient indicator of the adhesion behaviour of the system, whereas the presence of hydrophobic elements, such as the halogen substituents in the terminal moieties of SAMs 1–3, proved very influential on the results.

Acknowledgements

We acknowledge The University of Birmingham and ACORN (A Collaboration on Research into Nanoparticles) for financial support.

Scheme A1. Synthetic route employed for the synthesis of SAM compounds 1–3.

Scheme A2. Synthetic route employed for the synthesis of SAM compound 4.
We also acknowledge the assistance for production of Cr-primed Au-coated glass microscope slides given by Professor G.J. Leggett and Dr. S. Sun at the University of Sheffield, School of Chemistry.

Appendix A

The following information is presented in the appendix.

(i) Synthesis and characterisation data for SAM compounds 1–4.

(ii) Characterisation results for SAMs 1–4, consisting of survey spectra and percentage elemental composition as determined by X-ray photoelectron spectroscopy, and thickness data as determined by ellipsometry.

A.1. Synthesis and characterisation data for SAM compounds 1–4

Schemes A1 and A2 show the synthetic route employed in order to obtain SAM compounds 1–4. Compounds 5–9 are the intermediates synthesized prior to obtaining SAM compounds 1–4, and all molecules are introduced in order of their synthesis beginning with the simplest head group (4), with SAM compounds 1–4 having previously been numbered in the main text.

• Compound 8

To a solution of 11-mercaptopoundecanoic acid 7 (7.0 g, 32.1 mM) in C2H5OH (100 mL) heated under reflux was added a solution of iodine (4.07 g, 16.03 mM) in C2H5OH (50 mL). Heating was continued for 12 h after which the reaction was allowed to cool to room temperature and washed with a saturated aqueous solution of Na2S2O3 (50 mL). The products were extracted into CH2Cl2 and dried in vacuo affording 8 (6.47 g, 82%), m/z (ES) 513 [M+Na]+, δH (500 MHz, (CD3)2SO) 4.09 (4H, q, J = 7.3 Hz), 2.65 (4H, t, J = 7.3 Hz), 2.26 (4H, t, J = 7.3 Hz), 1.61 (8H, m), 1.34 (30H, m). δC (400 MHz, CDCl3) 173.9, 60.1, 39.1, 34.4, 29.3, 29.2, 28.5, 24.9, 14.2. Elemental analysis found C 60.78%, H 9.70%.

• Compound 9

To a vigorously stirred solution of 8 (4.75 g, 9.68 mM) in THF (100 mL) was added a solution of potassium hydroxide (1.63 g, 29.0 mM) in H2O (1:1, 20 mL). The reaction was stirred for 12 h, and acidified with HCl (aq, 2 M, 20 mL) upon which a white solid precipitated. The solid was filtered off, washed with H2O (100 mL), cold C2H5OH (100 mL) and dried in vacuo affording 9 as white plate-like crystals (4.20 g, 99%). m/z (ES) 457 [M+Na]+.

A.2. Additional figures

Fig. A1. XPS survey spectrum for SAM 1.

Fig. A2. XPS survey spectrum for SAM 2.

Fig. A3. XPS survey spectrum for SAM 3.

Fig. A4. XPS survey spectrum for SAM 4.
Table A1
Ellipsometrically measured thicknesses for SAMs 1–4

<table>
<thead>
<tr>
<th>SAM</th>
<th>Calculated thickness range (nm)</th>
<th>Measured thickness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.64–1.89</td>
<td>0.87 ± 0.15</td>
</tr>
<tr>
<td>2</td>
<td>1.64–1.89</td>
<td>1.36 ± 0.15</td>
</tr>
<tr>
<td>3</td>
<td>1.64–1.89</td>
<td>1.69 ± 0.19</td>
</tr>
<tr>
<td>4</td>
<td>1.64–2.24</td>
<td>1.42 ± 0.31</td>
</tr>
</tbody>
</table>

A2. Characterisation results for SAMs 1–4

- **XPS**

Figures A1–A4 show the survey spectra obtained for SAMs 1–4 respectively, as well as the percentage compositions of the SAMs as calculated from XPS data. These results show that the SAMs all exhibited the correct element photoelectrons for the molecules from which the SAMs were formed. Additionally, no unexpected elements were found to be present in the SAMs, all of which suggests that the SAMs had formed successfully.

- **Ellipsometry**

A thickness range for each SAM was calculated by estimating the length of the molecular structures of compounds 1–4 using ChemDraw Ultra (v7.0.1, CambridgeSoft, UK) and Chem3D Ultra (v7.0.0, CambridgeSoft, UK) software. The upper limit of the range is the full length of the SAM molecule. The chosen lower limit of the range is the height of the SAM molecule at a tilt angle of 30° to the surface normal. These values are given in Table A1. The results indicate that the SAMs had all formed, although their thicknesses tended to be lower than the lower value of the calculated thickness range, with the exception of SAM 3. Given that the SAM molecules all exhibit sterically bulky pyridine head groups, it is probable that the size of the head groups decreased the maximum achievable packing density of the molecules on the surface, leading to a lower than expected SAM thicknesses.

References