Assimilating Martian atmospheric constituents using a global circulation model

How to cite:


For guidance on citations see FAQs

© 2015 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:

http://www.hou.usra.edu/meetings/lpsc2015/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Assimilating martian atmospheric constituents using a global circulation model

Stephen R. Lewis, Liam J. Steele, James A. Holmes, and Manish R. Patel
Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK (stephen.lewis@open.ac.uk)

Introduction
The technique of data assimilation is employed in a novel way for a planetary atmosphere to perform a complete spatial and temporal coupled physical and chemical atmospheric constituent data over periods of several Mars years. Observations of martian atmospheric constituents, generally made from orbiting spacecraft, are often sparse and incomplete. A global circulation model can be used to predict the transport, phase changes, and chemical reactions that these species undergo. If constrained by observations, it can then provide a consistent interpolation to unobserved regions and, in principle, useful a priori for future retrievals. Furthermore, any consistent misfit between the model predictions and new observations can be used to identify potentially important physical processes that are missing from the model, including inferring the presence and location of sources and sinks.

Data Assimilation
Data assimilation is the combination of observations and models, which provide physical constraints and propagate the observational information that is introduced. This offers some significant potential advantages for the analysis of atmospheric data from other planets [4]. Thermal and dust opacity observations have been successfully assimilated over a period of about eight Mars Years (MY), including data from the Thermal Emission Spectrometer (TES) aboard NASA Mars Global Surveyor [5, 6] in MY24–27 and Mars Climate Sounder (MCS) from NASA Mars Reconnaissance Orbiter (MRO) in MY28–31.

Previous work has focused on assimilation of temperature and total column dust opacity into a Mars global circulation model (MGCM), which includes the option of a coupled photochemical model [2, 3]. We now add assimilation of water vapour, water cloud aerosol and chemical species. Results shown in this poster for water vapour are for MY24–25 and for water ice and ozone are for MY30.

Below: dust absorption optical depth at 9.3 μm, normalised to 810 Pa and averaged over longitude. This should be multiplied by about 2.6 to get a broadband visible dust total extinction. The data here are from [7], assimilation gives similar zonally- and diurnally-averaged results.

References

Acknowledgments
The authors gratefully acknowledge the financial support of the UK Space Agency (UKSA) and Science & Technology Facilities Council (STFC). We are grateful for ongoing collaborations and discussions with François Forget and co-workers (LMD) and Franck Lefèvre (LAMTOS), Peter Read (Oxford), Luca Montabone (SSC), Miguel López Valerio (IAM), and John Wilson (GSFD). We thank in particular Michael Smith (NASA/GSFC), David Kass, Amin Kieffer, Tim Schorghöfer, and Dan McCauley (NASA/JPL), and Todd Clancy and Michael Wolff (SSC) for discussions that helped us to interpret the spacecraft observations used in this study.

Background Image: Mars Exploration Rover Mission, Cornell, JPL, NASA.