Assimilating Martian atmospheric constituents using a global circulation model

How to cite:

© 2015 The Authors

Version: Version of Record

Link(s) to article on publisher’s website: http://www.hou.usra.edu/meetings/lpsc2015/
Assimilating martian atmospheric constituents using a global circulation model

Stephen R. Lewis, Liam J. Steele, James A. Horne, and Manish R. Patel
Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK (stephen.lewis@open.ac.uk)

Introduction
The technique of data assimilation is employed in a novel way for a planetary atmosphere to perform a complete spatial and temporal simulation of the martian atmospheric constituent data over periods of several Mars years. Observations of martian atmospheric constituents, generally made from orbiting spacecraft, are often sparse and incomplete. A global circulation model can be used to predict the transport, phase changes, and chemical reactions that these species undergo. If constrained by observations, it can then provide a consistent interpolation to unobserved regions and, in principle, a useful a priori for future retrievals. Furthermore, any consistent mis-fit between the model predictions and new observations can be used to identify potentially important physical processes that are missing from the model, including inferring the presence and location of sources and sinks.

Data Assimilation
Data assimilation is the combination of observations and models, which provide physical constraints and propagate the observational information that is introduced. This offers some significant potential advantages for the analysis of atmospheric data from other planets [4]. Thermal and dust opacity observations have been successfully assimilated over a period of about eight Mars Years (MY), including data from the Thermal Emission Spectrometer (TES) aboard NASA Mars Global Surveyor [6, 11]. Assimilation of TES-MGS data has been shown to improve the model’s predictive capability, although the system generally retains information from observations over only a short time scale and is unable to reconstruct the photochemistry of ozone in daylight. This is less of a problem in polar regions around winter, and assimilation of ozone is able to highlight differences in the structure of the martian polar vortex when compared to a control model run.

Ozone Assimilation
The Mars Color Imager (MARCI) [1] aboard MRO provides near-deaily global mapping of ozone column concentration. These data were used alongside MGS temperature and dust opacity observations, which help to ensure a realistic atmospheric dynamical state. Ozone has been successfully assimilated into the MGCM and can be shown to improve the model’s predictive capability, although the system generally retains information from observations over only a short time scale and is unable to reconstruct the photochemistry of ozone in daylight. This is less of a problem in polar regions around winter, and assimilation of ozone is able to highlight differences in the structure of the martian polar vortex when compared to a control model run.

Conclusions
The data set resulting from a constituent assimilation allows a detailed study of the atmospheric state that is not possible using observations or models alone. The MGCM has the ability to transport many independent tracers, so a wide variety of photochemically active and passive trace species can be assimilated simultaneously as observations become available. Chemical data assimilation is a relatively new area of Mars research. Assimilation of even a single chemical species can provide constraints on other observed constituents and provide estimates for unobserved constituents. Chemical rate coefficients, primarily from laboratory experiments, can be tested by reconciling observational datasets and theoretical models. The assimilation of such observations should lead to improvements in martian chemical models and better use of present and future observations, such as those from the 2016 ESA ExoMars Trace Gas-Orbiter.

References

Acknowledgments
The authors gratefully acknowledge the financial support of the UK Space Agency (UKSA) and Science & Technology Facilities Council (STFC). We are grateful for ongoing collaborations and discussions with François Forget and co-workers (IDS) and Franck Lefèvre (LATMOS). Peter Read (Oxford), Luca Montabone (SSi), Miguel Lopez Valverde (IAM), and John Wilson (ISDF). We thank in particular Michael Smith (NASA/GSFC), David Kass, Armin Kieffer, Tim Schodlok, and Dan McCauley (NASA/JPL), and Todd Clancy and Michael Wolff (SSi) for discussions that helped us to interpret the spacecraft observations used in this study. Background Image: Mars Exploration Rover Mission, Cornell, JPL, NASA.

Poster Location: The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.